One-Dimensional Arrays of Small Tunnel Junctions

  • P. Delsing
Part of the NATO ASI Series book series (NSSB, volume 294)


Several of the characteristic and interesting single charge tunneling effects have been observed in ID arrays of tunnel junctions, i. e., in series coupled arrays of many, closely spaced, ultrasmall junctions. For example, the time correlation of tunnel events was first observed in such an array. The interpretation of the results obtained with an array may be complicated as compared to a single junction, but the additional degrees of freedom for an array, like the formation of charge “solitons”, may be of advantage in developing the single charge effects and, in particular, for applications of these effects. One of the advantages of series coupled junctions is that it is easier to fabricate high resistance tunnel junctions closely connected to the junction under study than high resistance conventional resistors.


Versus Characteristic Versus Curve Gate Voltage Tunnel Junction Tunnel Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).ADSCrossRefGoogle Scholar
  2. [2]
    K. K. Likharev, N. S. Bakhvalov, G. S. Kazacha, and S. I. Serdyukova, IEEE Trans. Magn. 25, 1436 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev and S. I. Serdyukova, Zh. Eksp. Teor. Fiz. 95, 1010 (1989) [Sov. Phys. JETP, 68, 581 (1989)].ADSGoogle Scholar
  4. [4]
    M. Amman, E. Ben-Jacob, and K. Mullen, Phys. Lett. A, 142, 431 (1989).ADSCrossRefGoogle Scholar
  5. [5]
    E. Ben-Jacob, K. Mullen, and, M. Amman, Phys. Lett. A, 135, 390 (1989).ADSCrossRefGoogle Scholar
  6. [6]
    P. Delsing, Ph.D. thesis, Chalmers University of Technology (1990).Google Scholar
  7. [7]
    L.J. Geerligs, Ph.D. thesis, Delft University of Technology (1990).Google Scholar
  8. [8]
    P. Delsing, T. Claeson, K. K. Likharev and L. S. Kuzmin, Phys. Rev. B 42, 7439 (1990).ADSCrossRefGoogle Scholar
  9. [9]
    M. Iansiti, M. Tinkham, A. T. Johnson, W. F. Smith and C. J. Lobb, Phys. Rev. B 39, 6465 (1989).ADSCrossRefGoogle Scholar
  10. [10]
    P. Delsing, K. K. Likharev, L. S. Kuzmin and T. Claeson, Phys. Rev. Lett. 63, 1861 (1989).ADSCrossRefGoogle Scholar
  11. [11]
    L. J. Geerligs, V. F. Anderegg, C. A. van der Jeugd, J. Romijn and J. E. Mooij, Europhys. Lett. 10, 79 (1989).ADSCrossRefGoogle Scholar
  12. [12]
    P. Delsing, K. K. Likharev, D. B. Haviland, A. N. Korotkov, and T. Claeson, to be published in the proceedings of SQUID’ 91.Google Scholar
  13. [13]
    L. J. Geerligs, V. F. Anderegg, P. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).ADSCrossRefGoogle Scholar
  14. [14]
    H. Pothier, P. Lafarge, P. F. Orfila, C. Urbina, D. Esteve, and M. H. Devoret, Physica B 169, 573 (1991).ADSCrossRefGoogle Scholar
  15. [15]
    L. S. Kuzmin, P. Delsing, T. Claeson, and K. K. Likharev, Phys. Rev. Lett. 62, 2539 (1989).ADSCrossRefGoogle Scholar
  16. [16]
    K. K. Likharev, IEEE Trans. Magn. 23, 1142 (1987).ADSCrossRefGoogle Scholar
  17. [17]
    P. Delsing, T. Claeson, G. S. Kazacha, L. S. Kuzmin, and K. K. Likharev, IEEE Trans. Magn. 27, 2581 (1991).ADSCrossRefGoogle Scholar
  18. [18]
    P. Delsing, K. K. Likharev, L. S. Kuzmin and T. Claeson, Phys. Rev. Lett. 63, 1180 (1989).ADSCrossRefGoogle Scholar
  19. [19]
    D. V. Averin and A. A. Odintsov, Phys. Lett. A 140, 251 (1989).ADSCrossRefGoogle Scholar
  20. [20]
    D. V. Averin, A. N. Korotkov, and Yu. V. Nazarov, Phys. Rev. Lett. 66, 2818 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • P. Delsing
    • 1
  1. 1.Department of PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations