Josephson Effect in Low-Capacitance Tunnel Junctions

  • M. Tinkham
Part of the NATO ASI Series book series (NSSB, volume 294)


In a broad discussion of Josephson junctions, many regimes exist, distinguished by the relative magnitudes of various parameters. Characteristic energies are the Josephson energy E j , the charging energy E c = e 2/2C, and the thermal energy k B T. Equally important are the characteristic resistances: the normal state resistance R n , the quantum resistance1 R q = h/4e 2 = 6453 Ω, and the impedance of free space Z o = 377 Ω. The fact that Z o Rq implies that quantum effects are hard to observe, even in high resistance junctions, unless the junction is buffered from the low electromagnetic impedance of its leads. Recently, several groups have accomplished this to a considerable extent by inserting physically small isolating resistors of high resistance in series with the leads in the immediate vicinity of the junction. Because of stray capacitance effects, however, effective high impedance filters at microwave frequencies are not simple to achieve, and the extensive and systematic early experiments of the Harvard group were made with essentially direct connection to leads, which presumably acted as transmission lines characterized by characteristic impedances of order Z o . These data could be, and were, explained in terms of quantum effects related to delocalization of phase by single electron charging energies. Now, with the general recognition of the importance of transmission line effects and the development of more comprehensive theories, the interpretation of these data needs to be reexamined.


Versus Curve Josephson Junction Cooper Pair Tunnel Junction Quantum Tunneling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).ADSCrossRefGoogle Scholar
  2. [2]
    W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).ADSCrossRefGoogle Scholar
  3. D.E. McCumber, J. Appl. Phys. 39, 3113 (1968).ADSCrossRefGoogle Scholar
  4. [3]
    T. Fulton and L. N. Dunkleberger, Phys. Rev. B 9, 4760 (1974).ADSCrossRefGoogle Scholar
  5. [4]
    E. Ben-Jacob, D. J. Bergman, B. J. Matkowsky, and Z. Schuss, Phys. Rev. A 26, 2805 (1982).ADSCrossRefGoogle Scholar
  6. [5]
    A. T. Johnson, C. J. Lobb, and M. Tinkham, Phys. Rev. Lett. 65, 1263 (1990).ADSCrossRefGoogle Scholar
  7. [6]
    M. Iansiti, M. Tinkham, A. T. Johnson, W. F. Smith, and C. J. Lobb, Phys. Rev. B 39, 6465 (1989).ADSCrossRefGoogle Scholar
  8. [7]
    J. M. Martinis and R. L. Kautz, Phys. Rev. Lett. 63, 1507 (1989).ADSCrossRefGoogle Scholar
  9. [8]
    R. L. Kautz and J. M. Martinis, Phys. Rev. B 42, 9903 (1990).ADSCrossRefGoogle Scholar
  10. [9]
    V. Ambegaokax and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).ADSCrossRefGoogle Scholar
  11. [10]
    A. T. Johnson, Jr. Dissertation, Harvard University, 1990, (unpublished).Google Scholar
  12. [11]
    R. H. Ono, M. J. Cromar, R. L. Kautz, R. J. Soulen, J. H. Colwell, and W. E. Fogle, IEEE Trans. Magn. MAG-23, 1670 (1987).ADSCrossRefGoogle Scholar
  13. [12]
    L. S. Kuzmin, Yu. V. Nazarov, D. B. Haviland, P. Delsing, and T. Claeson, Phys. Rev. Lett. 67, 1161 (1991).ADSCrossRefGoogle Scholar
  14. [13]
    A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).ADSCrossRefGoogle Scholar
  15. [14]
    M. Tinkham, Introduction to Superconductivity, McGraw-Hill 1975; reprinted by Krieger 1980, 1985.Google Scholar
  16. [15]
    B. Mirhashem and R. A. Ferrell, Phys. Rev. Lett. 61, 483 (1989).ADSCrossRefGoogle Scholar
  17. [16]
    K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985).ADSCrossRefGoogle Scholar
  18. [17]
    See, for example, J. M. Ziman, Principles of the Theory of Solids, Cambridge, 1964, pp. 163-168.Google Scholar
  19. [18]
    D. V. Averin, Yu. V. Nazarov, and A. A. Odintsov, Physica B 165&166, 945 (1990).CrossRefGoogle Scholar
  20. G. Falci, V. Bubanja, and G. Schön, Z. Phys. B 85, 451 (1991); for background.Google Scholar
  21. see G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).ADSCrossRefGoogle Scholar
  22. [19]
    M. Iansiti, A. T. Johnson, C. J. Lobb, and M. Tinkham, Phys. Rev. B 40, 11370 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • M. Tinkham
    • 1
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations