The Fidelity of 3D Reconstructions from Incomplete Data and the Use of Restoration Methods

  • José-Maria Carazo


During the last two decades it has become increasingly evident that electron microscopy images of typical thin biological specimens carry a large amount of information on the three-dimensional (3D) structure of the object. It has been shown many times how the information contained in a set of images (2D signals) can determine a useful estimate of the 3D structure of the specimen under study. Naturally, the mathematical methods used in these studies have become more and more elaborate as the complexity of the structural problems increased.


Maximum Entropy Fourier Space Maximum Entropy Method Restoration Method Contrast Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard, D. A. and Stroud, R. M. (1982). Linking regions between helices in bacteriorhodopsin revealed. Biophys. J. 37:589–602.PubMedGoogle Scholar
  2. Andrews, H. C. and Hunt, B. R. (1977). Digital Image Restoration. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  3. Barth, M., Bryan, R. K., and Hegerl, R. (1989). Approximation of missing-cone data in 3D electron microscopy. Ultramicroscopy 31:365–378.CrossRefGoogle Scholar
  4. Barth, M., Bryan, R. K., Hegerl, R., and Baumeister, W. (1988). Estimation of missing data in threedimensional electron microscopv. Scanning Microsc. Suppl 2:277–284.Google Scholar
  5. Bricogne, G. (1988). A Bayesian statistical theory of the phase problem I. A multichannel maximumentropy formalism for constructing generalized joint probability distributions of structure factors. Acta Crystallogr. A 44:517–545.CrossRefGoogle Scholar
  6. Browder, F. E. (1965). Fixed-point theorems for noncompact mappings in Hilbert space. Proc. Nat. Acad. Sci. USA 53:1272–1276.PubMedCrossRefGoogle Scholar
  7. Carazo, J. M. and Carrascosa, J. L. (1987a). Information recovery in missing angular data cases: an approach by the convex projections method in three dimensions. J. Microsc. 145:23–43.Google Scholar
  8. Carazo, J. M. and Carrascosa, J. L. (1987b). Restoration of direct Fourier three-dimensional reconstructions of crystalline specimens by the method of convex projections. J. Microsscc. 145:159–177.CrossRefGoogle Scholar
  9. Carazo, J. M., Wagenknecht, T., and Frank, J. (1989). Variations of the three-dimensional structure of the Escherichia coli ribosome in the range of overlap views. Biophys. J. 55:465–477.PubMedCrossRefGoogle Scholar
  10. Carazo, J. M., Wagenknecht, T., Radermacher, M., Mandiyan, V., Boublik, M., and Frank, J. (1988). Three-dimensional structure of 50S Escherichia coli ribosomal subunits depleted of proteins L7/L12. J. Mol. Biol. 201:393–404.PubMedCrossRefGoogle Scholar
  11. Chalcroft, J. P. and Davey, C. L. (1984). A simply constructed extreme-tilt holder for the Philips eucentric stage. J. Microsc. 134:41–48.CrossRefGoogle Scholar
  12. Chiu, M. Y., Barrett, H. H., Simpson, R. G., Chou, C., Arendt, J. W., and Gindi, G. R. (1979). Threedimensional radiographic imaging with a restricted view angle. J. Opt. Soc. Am. 69(10):1323–1333.CrossRefGoogle Scholar
  13. Civanlar, M. R. and Trussell, H. J. (1986). Digital signal restoration using fuzzy sets. IEEE Trans. Acoust. Speech and Signal Process. ASSP-34(4):919–936.Google Scholar
  14. Crowther, R. A., DeRosier, D. J., and Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. London A 317:319–340.Google Scholar
  15. DeRosier, D. J. and Moore, P. B. (1970). Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52:355–369.Google Scholar
  16. Erickson, H. P. and Klug, F. R. S. (1971). Measurement and compensation of defocusing and aberrations in Fourier processing of electron micrographs. Phil. Trans. R. Soc. London B 261:105–113.Google Scholar
  17. Frank, J. and Radermacher, M. (1986). Three-dimensional reconstruction of nonperiodic macromolecular assemblies from electron micrographs, in Advanced Techniques in Biological Electron Microscopy (J. Koehler, ed.), Springer-Verlag, Berlin.Google Scholar
  18. Frieden, B. R. (1972). Restoring with maximum likelihood and maximum entropy. J. Opt. Soc. Am. G2:511–518.CrossRefGoogle Scholar
  19. Gerchberg, R. W. (1974). Super-resolution through error energy reduction. Opt. Acta 21(9):709–720.CrossRefGoogle Scholar
  20. Glaeser, R. M., Tom, L., and Kim, S. H. (1990). Three-dimensional reconstruction from incomplete data: Interpretability of density maps at “atomic” resolution. Ultramicroscopy 27:307–318.CrossRefGoogle Scholar
  21. Goldburg, M. and Marks II, R. J. (1985). Signal synthesis in the presence of an inconsistent set of constraints. IEEE Trans. Circuits Syst. CAS-32(7):647–663.Google Scholar
  22. Gordon, R. and Herman, G. T. (1971). Reconstruction of pictures from their projections. Comm. ACM 14:759–768.CrossRefGoogle Scholar
  23. Gulf, S. F. (1988). Developments in maximum entropy data analysis, in 8th MaxEnt Workshop, Cambridge, UK.Google Scholar
  24. Hanson, K. M. (1987). Bayesian and related methods in image reconstruction from incomplete data, in Image Recovery: Theory and Application (H. Stark, ed.), Academic Press, Orlando.Google Scholar
  25. Hanson, K. M. and Myers, K. J. (1990). Comparison of the algebraic reconstruction technique with the maximum entropy reconstruction technique for a variety of detection tasks. SPIE Proc. 1231.Google Scholar
  26. Hanson, K. M. and Wecksung, G. W. (1983). Bayesian approach to limited-angle reconstruction in computed tomography. J. Opt. Soc. Am. 73:1501–1509.Google Scholar
  27. Henderson, R. and Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London) 257:28–32.Google Scholar
  28. Herman, G. T. (1980). Image Reconstruction from Projections. Academic Press, New York.Google Scholar
  29. Howard, J. (1988). Tomography and reliable information. J. Opt. Soc. Am. A 5(7):999–1014.CrossRefGoogle Scholar
  30. Johnson, R. W. and Shore, J. E. (1983). Comments on and correction to “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory IT-29(6):942–943.Google Scholar
  31. Katz, M. B. (1978). Questions of uniqueness and resolution in reconstruction from projections, in Lectures in Biomathematics, Vol. 26, Springer-Verlag, Berlin.Google Scholar
  32. Klug, A. and Crowther, R. A. (1972). Three-dimensional image reconstruction from the viewpoint of information theory. Nature 238:435–440.Google Scholar
  33. Lawrence, M. C., Jaffer, M. A., and Sewell, B. T. (1989). The application of the maximum entropy method to electron microscopy tomography. Ultramicroscopy 31:285–302.Google Scholar
  34. Lepault, J. and Pitt, T. (1984). Projected structure of unstained frozen-hydrated T-layer of Bacillus brevis. EMBO J. 3(1):101–105.Google Scholar
  35. McCaughey, D. G. and Andrews, H. C. (1977). Degrees of freedom for projection imaging. IEEE Trans. Acoust., Speech and Signal Process. ASSP-25:63–73.Google Scholar
  36. Opial, Z. (1967). Weak convergence of the sequence of successive approximations for nonexpannsive mappings. Bull. Am. Math. Soc. 73:591–597.CrossRefGoogle Scholar
  37. Oskoui-Fard, P. and Stark, H. (1988). Tomographic image reconstruction using the theory of convex projections. IEEE Trans. Med. Imaging 7(1):45–58.Google Scholar
  38. Papoulis, A. (1975). A new algorithm in spectral analysis and band-limited extrapolations. IEEE Trans. Circuits Syst. CAS-22:735–742.Google Scholar
  39. Pavlovic, G. and Tekalp, A. M. (1990). Restoration in the presence of multiplicative noise with application to scanned photographic images, in Proc. Int. Conf. Acoust., Speech and Signal Processing.Google Scholar
  40. Penczek, P., Srivastava, S., and Frank, J. (1990). The structure of the 70S E. coliribosome in ice, in Proc. XIIth Int. Congr. Electron Microscopy Vol. 1. pp. 506–507.Google Scholar
  41. Peng, H. (1988). Fan-Beam Reconstruction in Computer Tomography from Full and Partial Projection Data. Ph.D. thesis, Rensselaer Polytechnique Institute, Troy, New York.Google Scholar
  42. Polak, E. (1971). Computational Methods in Optimization: A Unified Approach. Academic Press, New York.Google Scholar
  43. Radermacher, M. (1980). Dreidimensionale Rekon.struktion bei kegelförmiger Kippung im Elektronenmikroskop. Ph.D. thesis, Technische Universität München.Google Scholar
  44. Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. Elect. Micros. Tech. 9:359–394.CrossRefGoogle Scholar
  45. Radermacher, M. and Hoppe, W. (1980). Properties of 3-D reconstruction from projections by conical tilting compared to single axis tilting, in Proc. Seventh European Congr. Electron Microscopy, Vol. 1, pp. 132–133.Google Scholar
  46. Rushforth, C. K. (1987). Signal restoration, functional analysis and Fredholm integral equations of the first kind, in Image Recovery. Theory and Application (H. Stark, ed.), Academic Press, Orlando.Google Scholar
  47. Schafer, R. W., Mersereau, R. M., and Richards, M. A. (1981). Constrained iterative restoration algorithms. Proc. IEEE 69(4):432–450.Google Scholar
  48. Schelebusch, H.-J. and Splettstosser, W. (1985). On a conjecture of J. L. C. Sanz and T. S. Huang. IEEE Trans. Acoust. Speech and Signal Process. ASSP-33(6):1628–1630.Google Scholar
  49. Sezan, M. I. and Stark, H. (1982). Image restoration by the method of convex projections. II: Applications and numerical results. IEEE Trans. Med. Imaging MI-1:95–101.Google Scholar
  50. Sezan, M. I. and Stark, H. (1983). Image restoration by convex projections in the presence of noise. Appl. Opt. 22:2781–2789.Google Scholar
  51. Sezan, M. I. and Tekalp, A. M. (1990a). Adaptative image restoration with artifact suppression using the theory of convex projections. IEEE Trans. Acoust. Speech and Signal Process. 38(1):181–185.Google Scholar
  52. Sezan, M. I. and Tekalp, A. M. (1990b). A survey of recent developments in digital image restoration. Opt. Eng. 29(5):393–404.Google Scholar
  53. Sezan, M. I. and Trussell, H. J. (1991). Prototype image constraints for set-theoretic image restoration, in IEEE Trans. Acoust. Speech Signal Process. 39(10):2275–2285.Google Scholar
  54. Shore, J. E. and Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory IT-26(1):26–37.Google Scholar
  55. Skilling, J. (1988). Classical MaxEnt data analysis, in 8th MaxEnt Workshop, Cambridge, UK.Google Scholar
  56. Skilling, J. and Bryan, R. K. (1984). Maximum entropy image reconstruction: general algorithm. Mon. Not. R. A.stronom. Soc. 211:111–214.Google Scholar
  57. Smith, K. T., Solmon, D. C., and Wagner, S. L. (1977). Practical and mathematical aspects of the problem of reconstructing objects from radiographs. Bull. Am. Math. Soc. 83(6):1227–1268.Google Scholar
  58. Smith, P. R., Peters, T. H., and Bates, R. H. T. (1973). Image reconstruction from finite numbers of projections. J. Phys. A 6:361–382.CrossRefGoogle Scholar
  59. Tam, K. C. and Perez-Mendez, V. (1981a). Limited-angle three-dimensional reconstruction using Fourier transform iterations and Radon transform iterations. Opt. Eng. 20(4):586–589.Google Scholar
  60. Tam, K. C. and Perez-Mendez, V. (1981b). Tomographical imaging with limited-angle input. J. Opt. Soc. Am. 71:582–592.Google Scholar
  61. Tikochinsky, Y., Tishby, N. Z., and Levine, R. D. (1984). Consistent inference of probabilities for reproducible experiments. Phys. Rev. Lett. 52(16):1357–1360.Google Scholar
  62. Trussell, H. J. (1980). The relationship between image restoration by the maximum a posteriori method and the maximum entropy method. IEEE Trans. Acoust. Speech and Signal Process. ASSP-28(1):114–117.Google Scholar
  63. Trussell, H. P. (1984). A priori knowledge in algebraic reconstructions methods, in Advances in Computer Vision and Image Processing, Vol. 1, pp. 265–316, JAI Press.Google Scholar
  64. Trussell, H. J. and Civanlar, M. R. (1983). The initial estimate in constrained iterative restoration, in ICASSP’83, pp. 643–646.Google Scholar
  65. Trussel, H. P. and Civanlar, M. R. (1984). Feasible solution in signal restoration. IEEE Trans. Acoust. Speech and Signal Process. ASSP-32:201–212.Google Scholar
  66. Welton, T. A. (1979). A computational critique of an algorithm for image enhancement in bright field electron microscopy, in Advances in Electronics and Electron Physics(L. Maston, ed.), Vol. 48, pp. 37–101. Academic Press, New York.Google Scholar
  67. Whittaker, E. T. (1914). On the functions which are represented by expansion of the interpolation theory. Proc. Roy. Soc. Edinburg A35:181–194.Google Scholar
  68. Woods, J. W. (1981). Two-dimensional Kalman filtering, in Topics in Applied Physics (T. S. Huang, ed.), Vol. 2. Springer-Verlag, Berlin.Google Scholar
  69. Youla, D. C. (1987). Mathematical theory of image restoration by the method of convex projections, in Image Recovery: Theory and Applications (H. Stark, ed.), Academic Press, Orlando.Google Scholar
  70. Youla, D. C. and Velasco, V. (1986). Extensions of a result on the synthesis of signals in the presence of inconsistent constraints. IEEE Trans. Circuits Syst. CAS-33(4):465–468.Google Scholar
  71. Youla, D. C. and Webb, H. (1982). Image restoration by the method of convex projections. I: Theory. IEEE Trans. Med. Imaging MI-1:81–94.Google Scholar
  72. Zadeh, L. A. (1965). Fuzzy sets. Inf. Vontrol 8:338–353.Google Scholar
  73. Zhou, X-W. and Xia, X.-G. (1989). The extrapolation of high-dimensionality band-limited functions. IEEE Trans. Acoust. Speech and Signal Process. ASSP-37(10):1576–1580.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • José-Maria Carazo
    • 1
  1. 1.Centro Nacional de Biotecnologia and Centro de Biología MolecularUniversidad AutonomaMadridSpain

Personalised recommendations