Holographic Display of 3D Data

  • Kaveh Bazargan

Abstract

Holography is a powerful optical technique for recording and displaying 3D information. In this chapter we discuss the application of holography in the display of tomographic data. It helps to have a good understanding of 3D perception in order to determine whether holography can be used beneficially in the display of scientific and medical data. For this reason, this chapter begins with an overview of the mechanisms which help us perceive the world in three dimensions. Later, we shall refer to these mechanisms to evaluate the various holographic techniques available.

Keywords

Reference Beam Spatial Light Modulator Chromatic Dispersion Motion Parallax Tomographic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, E. (1988). Optimal error diffusion for computer-generated holograms. J. Opt. Soc. Am. A 5:1803–1817.CrossRefGoogle Scholar
  2. Bazargan, K. (1983). Review of colour holography, in Proc. SPIE391 (S. A. Benton, ed.), pp. 11–18. Los Angeles, CA.Google Scholar
  3. Bazargan, K. (1985). A practical, portable system for white-light display of transmission holograms using dispersion compensation, in Proc. SPIE523 (L. Huff, ed.), pp. 24–25. Los Angeles, CA.Google Scholar
  4. Bazargan, K. (1986). A new method of colour holography, in Proc. SPIE673 (J. Ke and R. J. Pryputniewicz, eds.), pp. 68–70. Beijing, China.Google Scholar
  5. Bazargan, K., Chen, X. Y., Hart, S., Mendes, G., and Xu, S. (1988). Beam ratio in multiple-exposure volume holograms. J. Phys. D: Appl. Phys. 21:S160–S163.CrossRefGoogle Scholar
  6. Bazargan, K. and Forshaw, M. R. B. (1980). An image-plane hologram with non-image-plane motion parallax. Opt. Comm. 32:45–47.CrossRefGoogle Scholar
  7. Benton, S. A. (1969). Hologram reconstructions with extended incoherent sources. J. Opt. Soc. Am. 59:1545–1546.Google Scholar
  8. Benton, S. A. (1978). Achromatic images from white-light transmission holograms. J. Opt. Soc. Am. 68:1441.Google Scholar
  9. Benton, S. A. (1982). Survey of holographic stereograms, in Proc. SPIE367 (J. J. Pearson, ed.), pp. 15–19.Google Scholar
  10. Brown, B. R. and Lohman, A. W. (1966). Complex spatial filtering with binary masks. Appl. Opt. 5:967–969.PubMedCrossRefGoogle Scholar
  11. Burckhardt, C. B. (1966). Display of holograms in white light. Bell. Syst. Tech. J. 45:1841–1844.Google Scholar
  12. De Bitetto, D. J. (1966). White-light viewing of surface holograms by simple dispersion compensation. Appl. Phys. Lett. 9:417–418.CrossRefGoogle Scholar
  13. De Bitetto, D. J. (1969). Holographic panoramic stereograms synthesized from white light recordings. Appl. Opt. 8:1740–1741.Google Scholar
  14. Denisyuk, Y. N. (1962). Photographic reconstruction of the optical properties of an object in its own scattered radiation field. Sov. Phys. Dokl. 7:543–545.Google Scholar
  15. Hariharan, P. (1983). Colour holography, in Progress in Optics20 (E. Wolf, ed.) North-Holland, Amsterdam.Google Scholar
  16. Hariharan, P. (1984). Optical Holography. Cambridge University Press, Cambridge.Google Scholar
  17. Hart, S. J. and Dalton, M. N. (1990). Display holography for medical tomography, in Proc. SPIE1212 (S. A. Benton, ed.), pp. 116–135. Los Angeles, CA.Google Scholar
  18. Johnson, K. M., Armstrong, M., Hesselink, L., and Goodman, J. W. (1985). Multiple multiple-exposure hologram. Appl. Opt. 24:4467–4472.PubMedCrossRefGoogle Scholar
  19. Johnson, K. M., Hesselink, L. and Goodman, J. W. (1982). Multiple exposure holographic display of CT medical data, in Proc. SPIE367, pp. 149–154.Google Scholar
  20. Keane, B. E. (1983). Holographic three-dimensional hard copy for medical computer graphics, in Proc. SPIE361 (E. Herron, ed.), pp. 164–168.Google Scholar
  21. Kostuk, R. K. (1989). Comparison of models for multiplexed holograms. Appl. Opt. 28:771–777.PubMedCrossRefGoogle Scholar
  22. Kostuk, R. K., Goodman, J. W., and Hesselink, L. (1986). Volume reflection holograms with multiple gratings: an experimental and theoretical evaluation. Appl. Opt. 25:4362–4369.PubMedCrossRefGoogle Scholar
  23. Leith, E. N. and Upatnieks, J. (1964). Wavefront reconstruction with diffuse illumination and three-dimensional objects. J. Opt. Soc. Am. 54:1295–1301.CrossRefGoogle Scholar
  24. Lin, L. H. (1969). Hologram formation in hardened dichromated gelatin films. Appl. Opt. 8:963–966.PubMedCrossRefGoogle Scholar
  25. McCrickerd, J. T. and George, N. (1968). Holographic stereogram from sequential component photographs. Appl. Phys. Lett. 12:10–12.CrossRefGoogle Scholar
  26. Paques, H. (1966). Achromatization of holograms. Proc. IEEE 54:1195–1196.CrossRefGoogle Scholar
  27. Rotz, F. B. and Friesem, A. A. (1966). Holograms with non-pseuedoscopic real images. Appl. Phys. Lett. 8:146–148.CrossRefGoogle Scholar
  28. Shankoff, T. A. (1968). Phase holograms in dichromated gelatin. Appl. Opt. 7:2101–2105.PubMedCrossRefGoogle Scholar
  29. Syms, R. R. A. (1989). Practical Volume Holography. Oxford University Press, Oxford.Google Scholar
  30. Walker, J. L. and Benton, S. A. (1989). In-situ swelling for holographic color control, in Proc. SPIE1051 (S. A. Benton, ed.), pp. 192–199. Los Angeles, CA.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kaveh Bazargan
    • 1
  1. 1.Focal Image LimitedLondonEngland

Personalised recommendations