Analysis of Three-Dimensional Image Data: Display and Feature Tracking

  • Zvi Kam
  • Hans Chen
  • John W. Sedat
  • David A. Agard


Microscopes have been used for almost two centuries to produce a wealth of biological information based on direct observation and photography. Recent advancements in digital image processing and display have created a revolution in biological and medical imaging. Digital methods have lead to significant improvements in the ease of image acquisition and data quality for both light and electron microscopy. It is now possible to routinely obtain quantitative image data and not simply pictures. The advent of quantitative microscopy is a major step forward in the application, and utilization of structural information for biological problems at the level of cells and cell components. Perhaps most significant has been the possibility of examining complex, noncrystalline objects such as supra molecular assemblies in three dimensions. Combined with powerful new probes to examine specific molecular components, three-dimensional imaging can provide new insights into the spatial localization patterns of specific molecules and their redistribution, for example during the cell cycle or development.


Matched Filter Volumetric Data Stereo Pair Drosophila Embryo Chromatin Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard, D. A., Hiraoka, Y., and Sedat, J. W. (1988). Three-dimensional light microscopy of diploid Drosophila chromosomes. Cell Motility Cytoskeleton 10:18–27.CrossRefGoogle Scholar
  2. Agard, D. A., Hiraoka, Y., Shaw, P., and Sedat, J. W. (1989). Fluorescence microscopy in three dimensions. Meth. Cell Biol. 30:353–377.Google Scholar
  3. Baker, H. H. and Bolles, R. C. (1989). Generalized epipolar-plane image analysis on the spatiotemporal surface. Int. J. Comput. Vision 3(1).Google Scholar
  4. Borland, L., Harauz, G., Bahr, G., and van Heel, M. (1988). Packing of the 30nm chromatin fiiber in the human metaphase chromosome. Chromosoma(Berlin) 97:159–163.CrossRefGoogle Scholar
  5. Brandt, A. (1986). Algebraic multigrid theory: the symmetric case. Appl. Math. Comput. 19:23–56.CrossRefGoogle Scholar
  6. Castleman, K. R. (1979). Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  7. Chen, H., Sedat, J. W., and Agard, D. A. (1990). Manipulations, display, and analysis of threedimensional biological images, in Handbook of Biological Confocal Microscopy (J. B. Pawley, ed.), Chap. 13, pp. 141–150. Plenum, New York. Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley-Interscience, New York.Google Scholar
  8. Dreibin, R. A., Carpenter, L., and Hanranhan, P. (1988). Volume rendering. Comput. Gr. 22:64–75.Google Scholar
  9. Hiraoka, Y., Minden, J. S., Swedlow, J. R., Sedat, J. W., and Agard, D. A. (1989). Focal points for chromosome condensation and decondensation revealed by three-dimensional in-vivo time-lapse microscopy. Nature 342:293–296.PubMedCrossRefGoogle Scholar
  10. Hiraoka, Y., Sedat, J. W., and Agard, D. A. (1987). The use of charged-coupled device for quantitative optical microscopy of biological structures. Science 238:36–41.PubMedCrossRefGoogle Scholar
  11. Hiraoka, Y., Sedat, J. W., and Agard, D. A. (1990). Determination of the three-dimensional imaging properties of an optical microscope system: partial confocal behavior in epi-fluorescence microscopy. Biophys. J. 57:325–333.PubMedCrossRefGoogle Scholar
  12. Houtsmuller, A. B., Oud, H. T. M., van der Voort, W. M., Baarslag, M. W., Krol, J. J., Mosterd, B., Mans, A., Brakendorf, G. J., and Nanninga, N. (1990). Image processing techniques for 3D chromosome analysis. J. Microsc. 158:235–248.CrossRefGoogle Scholar
  13. Huang, T. S., Yang, G. J., and Tang, G. Y. (1979). A fact two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech, Signal Process. ASSP-27: In Digital Image Processing and Analysis (R. Chellappa and A. A. Sawchuk, eds.), Vol. 1. IEEE Computer Society Press, 1985.Google Scholar
  14. Jones, T. A. (1982). In Computational Crystallography (D. Sayre, ed.), pp. 303–317. Oxford University Press, Oxford, England.Google Scholar
  15. Luther, P. K., Lawrence, M. C., and Crowther, R. A. (1988). A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24:7–18.Google Scholar
  16. Kellogg, D., Mitchison, T. J., and Alberts, B. (1988). Behavior of microtubules in living Drosophila embryos. Development 103:675–686.Google Scholar
  17. Minden, J. S., Agard, D. A., Sedat, J. W., and Alberts, B. M. (1989). Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical microscopy of living embryos. J. Cell Biol. 109:505–516.Google Scholar
  18. Paddy, M. R., Belmont, A. S., Saumweber, H., Agard, D. A., and Sedat, J. W. (1990). Nuclear envelope lamins form a discontinuous network in interphase nuclei which interact with only a fraction of the chromatin in the nuclear periphery. Cell 62:89–106 (1990).Google Scholar
  19. Rykowksi, M. C., Parmalee, S. J., Agard, D. A., and Sedat, J. W. (1988). Precise determination of the molecular limits of a polytene chromosome band: regulatory sequences for the notch gene are in the interband. Cell 54:461–472.CrossRefGoogle Scholar
  20. Soferman, Z. (1989). Computerized Optical Microscopy, Doctoral Thesis, Weizmann Institute, Rehovot Israel.Google Scholar
  21. van der Voort, H. T. M., Brakenhoff, G. J., and Baarslag, M. W. (1988). Three-dimensional visualization methods for confocal microscopy. J. Microsc. 153:123–132.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Zvi Kam
    • 1
  • Hans Chen
    • 2
  • John W. Sedat
    • 2
  • David A. Agard
    • 2
  1. 1.Department of Chemical ImmunologyWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Biochemistry and Biophysics and The Howard Hughes Medical InstituteUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations