Skip to main content

Computer Visualization of Volume Data in Electron Tomography

  • Chapter
Electron Tomography

Abstract

Visualization of the results of electron microscopic (EM) tomography is crucial to extracting the most meaningful biological information from a reconstruction. Choosing the most appropriate technique allows the user to draw better conclusions about structures. For some types of EM tomography such as reconstructions from tilted thick sections, the display of results is the most time-consuming step of the reconstruction. The choice of visualization methods will also determine the format in which the reconstruction can be viewed and published. For these reasons methods for the display and visualization of reconstructions are of great interest to investigators who use EM tomography as a tool for their research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artzy, E., Frieder, G., and Herman, G. T. (1981). The theory, design, implementation, and evaluation of a three dimensional surface detection algorithm. Comput. Gr. Image Process. 15:1–24.

    Article  Google Scholar 

  • Barillot, C., Gibaud, B., Lis, O., Min, L. L., Bouliou, A., Certen, L. G., Collorec, R., Coatrieux, J. L. (1988). Computer graphics in medicine: A survey. CRC Crit. Rev. Biomed. Eng. 15:269–307.

    CAS  Google Scholar 

  • Becker, S. C. and Barrett, W. A. (1990). Interactive morphometrics from three-dimensional surface images, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 418–425. IEEE Computer Society Press, Los Alamitos, CA.

    Chapter  Google Scholar 

  • Borland, L., Harauz, G., Gahr, G., and van Heel, M. (1989). Three-dimensional reconstruction of a human metaphase chromosome. Eur. J. Cell Biol. 48(Suppl. 25):149–152.

    Google Scholar 

  • Cappelletti, J. D. and Rosenfeld, A. (1989). Three-dimensional boundary following. Comput. Vision, Gr. Image Process. 48:80–92.

    Article  Google Scholar 

  • Chen, L., Herman, G. T., Reynolds, R. A. and Udupa, J. K. (1985). Surface shading in the cuberille environment. IEEE Corput. Gr. Appl. 5:33–43.

    Google Scholar 

  • Christiansen, H. and Sederberg, T. W. (1978). Combination of complex contour line definitions into polygonal element mosaics. Comput. Gr. 12:187–192.

    Article  Google Scholar 

  • Christiansen, H. and Stephenson, M. (1984). Overview of the MOVIE.BYU software system, in Proc. 5th Int. Conf. Vehicle Structural Mech., pp. 117–185. S. A. E., Warrendale, PA.

    Google Scholar 

  • Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and Teeter, B. C. (1988). Two algorithms for the three-dimensional reconstruction of tomographs. Med. Phys. 15:320–327.

    Article  PubMed  CAS  Google Scholar 

  • Cook, L. T., Dwyer, S. J., Batnitzky, S., and Lee, K. R. (1983). A three-dimensional display system for diagnostic imaging applications. IEEE Comput. Gr. Appl. 3:13–19.

    Article  Google Scholar 

  • DeRosier, D. J. and Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134.

    Google Scholar 

  • Dhawan, A. P., Misra, S., Thomas, S. R. (1990). Knowledge-based analysis and recognition of 3D image of human chest-cavity, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 162–169. IEEE Computer Society Press, Los Alamitos, CA.

    Google Scholar 

  • Drebin, R. A., Carpenter, L., and Hanrahan, P. (1988). Volume rendering. Comput. Gr. 22(4):65–74.

    Article  Google Scholar 

  • Ferwerda, J. G. (1982). The World of 3D, a Practical Guide to Stereo Photography. Nertherlands Society for Stereo Photography, Haven, Netherlands.

    Google Scholar 

  • Frank, J. (1989). Three dimensional imaging techniques in electron microscopy. BioTechnigues 7:164–173.

    CAS  Google Scholar 

  • Frenkel, K. A. (1989). Volume rendering. Comm. ACM 32(4):426–435.

    Article  Google Scholar 

  • Fuchs, H., Keder, Z. M., and Uselton, S. P. (1977). Optimal surface reconstruction from planar contours. Comm. ACM 20:693–702.

    Article  Google Scholar 

  • Fujimoto, A., Tanaka, T., and Iwata, K. (1986). ARTS: Accelerated ray tracing system. IEEE Comput. Gr. Appl. 6:16–26.

    Article  Google Scholar 

  • Garcia, E. V., Herbst, M. D., Cooke, C. D., Ezquerra, N. F., Evans, B. L., Folds, R. D., and De Puey, E. G. (1990). In Proc. First Conf. on Visualization in Biomedical Computing, pp. 157–161. IEEE Computer Society Press, Los Alamitos, CA.

    Google Scholar 

  • Goldwasser, S. M. (1986). Rapid techniques for the display and manipulation of 3-D biomedical data, in Proc. NCGA Computer Graphics 86, Anaheim, CA.

    Google Scholar 

  • Gordon, D. and Reynolds, R. A. (1985). Image space shading of 3-dimensional objects. Comput. Vision, Gr. Image Process. 29:361–376.

    Article  Google Scholar 

  • Gordon, D. and Udupa, J. K. (1989). Fast surface tracking in three dimensional binary images. Comput. Vision, Gr. Image Process. 45:196–214.

    Article  Google Scholar 

  • Gouraud, H. (1971). Continuous shading of curved surfaces. IEEE Trans. Comput. C-20:623–628.

    Article  Google Scholar 

  • Greenberg, D. P. (1989). Light reflection models for computer graphics. Science 244:166–173.

    Article  PubMed  CAS  Google Scholar 

  • Harauz, G. and Ottensmeyer, F. P. (1984). Nucleosome reconstruction via phosphorus mapping. Science 226:936–940.

    Article  PubMed  CAS  Google Scholar 

  • Heffernan, P. B. and Robb, R. A. (1985). A new method for shaded surface display of biological and medical images. IEEE Trans. Med. Images MI-4:26–38.

    Article  Google Scholar 

  • Herman, G. T. and Liu, H. K. (1979). Three-dimensional display of human organs from computed tomograms. Comput. Gr. Image Process. 9:1–21.

    Article  CAS  Google Scholar 

  • Hersh, J. S. (1990). A survey of modeling representations and their applications to biomedical visualization and simulation, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 432–441. IEEE Computer Society Press, Los Alamitos, CA.

    Chapter  Google Scholar 

  • Hodges, L. F. and McAllister, D. F. (1989). Computing stereographic views, in ACM Siggraph 89 Course Notes, pp. 4.1–4.31. ACM.

    Google Scholar 

  • Hohne, K. H. and Bernstein, R. (1986). Shading 3D-images from C1 using gray-level gradients. IEEE Trans. Med. Imaging MI-5:45–47.

    Article  Google Scholar 

  • Jimenez, A., Santisteban, A., Carazo, J. M., and Carrascosa, J. L. (1986). Computer graphic display method for visualizing three-dimensional biological structures. Science 232:1113–1115.

    Google Scholar 

  • Johnson, E. M. and Capowski, J. J. (1983). A system for the three-dimensional reconstruction of biological structures. Comput. Biomed. Res. 16:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, A., Yagel, R., and Bakalash, R. (1990). Direct interaction with a 3D Volumetric environment, Computer Graphics 24:33–34.

    Article  Google Scholar 

  • Leith, A., Marko, M., and Parsons, D. (1989). Computer graphics for cellular reconstruction. IEEE Comput. Gr. Appl. 9:16–23.

    Article  Google Scholar 

  • Lenz, R., Gudmundsson, B., Lindskog, B., Danielsson, P. E. (1986). Display of density values. IEEE Comput. Gr. Appl. 6:20–29.

    Article  Google Scholar 

  • Lepault, J. and Leonard, K. (1985). Three-dimensional structure of unstained, frozen-hydrated extended tails of bacteriophage T4. J. Mol. Biol. 182:431–441.

    Article  PubMed  CAS  Google Scholar 

  • Levoy, M. (1988). Display of surfaces from volume data. IEEE Comput. Gr. Appl. 8:29–37.

    Article  Google Scholar 

  • Levoy, M., Fuchs, H., Pizer, S. M., Rosenman, J., Chaney, E. L., Sherouse, G. W., Interrante, V., and Keil, J. (1990). Volume rendering in radiation treatment planning, in Proc. First Conf. on Visualization in Biomedical Computing. IEEE Computer Society Press, Los Alamitos, CA.

    Google Scholar 

  • Levoy, M. and Whitaker, R. (1990). Gaze directed volume rendering. Comput. Gr. 24:217–223.

    Article  Google Scholar 

  • Liu, H. K. (1977). Two- and three-dimensional boundary detection. Comput. Gr. Image Process. 6:123–134.

    Article  Google Scholar 

  • Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. Comput. Gr. 21(4 ):163–169.

    Article  Google Scholar 

  • Love, S. (1989). Three-dimensional hardcopy, in ACM Siggraph 89 Course Notes, pp. 5.1–5.32. ACM.

    Google Scholar 

  • Luther, P. (1989). Three-dimensional reconstruction of the Z-line in fish muscle. Eur. J. Cell Biol. 48(Suppl. 25):154–156.

    Google Scholar 

  • Marko, M., Leith, A., and Parsons, D. (1988). Three-dimensional reconstruction of cell from serial sections and whole-cell mounts using multilevel contouring of stereo micrographs. J. Electron Microsc. Tech. 9:395 411.

    Google Scholar 

  • McEwen, B. F. G., Radermacher, M., Grassucci, R. A., Turner, J. N., and Frank, J. (1986). Tomograhic three-dimensional reconstruction of cilia ultrastructure from thick sections. Proc. Nat. Acad. Sci. USA 83:9040–9044.

    Article  PubMed  CAS  Google Scholar 

  • McMillan, D., Johnson, R., and Mosher, C. (1989). Volume rendering on the TAAC-1. SunTech J. 2:52–58.

    Google Scholar 

  • Namba, K. and Caspar, D. L. D. (1985). Computer graphics representation of levels of organization in tobacco mosaic virus structure. Science 227:773–776.

    Article  PubMed  CAS  Google Scholar 

  • Ney, D., Fishman, E. K., and Magid, D. (1990a). Three-dimensional imaging of computed tomography: Techniques and applications, in Proc. First Conf. on Visualization in Biomedical Computing. IEEE Computer Society Press, Los Alamitos, CA.

    Google Scholar 

  • Ney, D., Fishman, E. K., Magid, D., and Drebin, R. A. (1990b). Volumetric rendering of computed tomography data: Principles and techniques. IEEE Comput. Gr. Appl. 10:24–32.

    Article  Google Scholar 

  • Oettl, H., Hegerl, R., and Hoppe, W. (1983). Three-dimensional reconstruction and averaging of 50S ribosome subunits of Escherichia coli from electron micrographs. J. Mol. Biol. 161:431–450.

    Article  Google Scholar 

  • Phong, B. T. (1975). Illumination for computer generated pictures. Comm. ACM 18:311–317.

    Article  Google Scholar 

  • Pizer, S. M., Fuchs, H., Mosher, C., Lifshitz, L., Abram, G. D., Ramanathan, S., Whitney, B., Rosenman, J. G., Staab, E. V., Chaney, E. L., and Sherouse, G. (1986). 3-D shaded graphics in radiotherapy and diagnostic imaging, in Proc. NCGA Computer Graphics 86. Anaheim, CA.

    Google Scholar 

  • Porter, T., and Duff, T. (1984). Compositing digital images. Comput. Gr. 18(3):253–259.

    Article  Google Scholar 

  • Radermacher, M. and Frank, J. (1984). Representation of three-dimensionally reconstructed objects in electron microscopy by surfaces of equal density. J. Microsc. 136:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Robb, R. A. and Barillot, C. (1989). Interactive display and analysis of 3-D medical images. IEEE Trans. Med. Imaging 8:217–226.

    Article  PubMed  CAS  Google Scholar 

  • Rusinek, H. and Mourino, M. (1989). Interactive graphic editor for analysis and enhancement of medical images. Comput. Biomed. Res. 16:79–87.

    Google Scholar 

  • Saxton, W. O. (1985). Computer generation of shaded images of solids and surfaces. Ultramicroscopy 16:387–394.

    Article  Google Scholar 

  • Schlusselberg, D. S., Smith, W. R., and Woodward, D. J. (1986). Three-dimensional display of medical image volumes, in Proc. NCGA Computer Graphics86. Anaheim, CA.

    Google Scholar 

  • Shantz, M. (1981). Surface defiinition for branching, contour defined objects. Comput. Gr. 15:242–259.

    Article  Google Scholar 

  • Skogland, U., Anderson, K., Stranberg, and Daneholt, B. (1986). Three-dimensional structure of a specific pre-messenger RNP particle established by electron microscope tomography. Nature 319:560–564.

    Article  Google Scholar 

  • Stracher, M. A., Goiten, M., and Rowell, D. (1989). Evaluation of volumetric differences through 3-dimensional display of distance of closest approach. Radiat. Oncol. Biol. Phys. 17:1095–1098.

    Article  CAS  Google Scholar 

  • Suh, D. Y., Mersereau, R. M., Eisner, R. L., Pettigrew, R. I. (1990). Automatic boundary detection on cardiac magnetic resonance image sequences for four dimensional visualization of left ventricle, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 149–156. IEEE Computer Society Press, Los Alamitos, CA.

    Chapter  Google Scholar 

  • Tiede, U., Hoehne, K. H., Bomans, M., Pommert, A., Reimer, M., and Weibecke, G. (1990). Investigation of medical 3D-rendering algorithms. IEEE Comput. Gr. Appl. 10:41–53.

    Article  Google Scholar 

  • Udupa, J. and Herman, G. (1989). Volume rendering versus surface rendering. Comm. ACM 32:1364–1367.

    Google Scholar 

  • Udupa, J. K. and Hung, H. (1990). Surface versus volume rendering: A comparative assessment, in Proc. First Conf. on Visualization in Biomedical Computing. IEEE Computer Society Press, Los Alamitos, CA.

    Google Scholar 

  • Upson, C. and Keeler, M. (1988). V-Buffer: Visible volume rendering. Computer Gr. 22(4):59–64.

    Article  Google Scholar 

  • van Heel, M. (1983). Stereographic representation of three-dimensional density distributions. Ultramicroscopy 11:307–314.

    Google Scholar 

  • Vannier, M. W., Marsh, J. L., and Warren, J. O. (1983). Three dimensional computer graphics for craniofacial surgical planning and evaluation. Comput. Gr. 17(3):263–273.

    Article  Google Scholar 

  • Verschoor, A., Frank, J., Radermacher, M., Wagenknecht, T., and Boublik, M. (1984). Threedimensional reconstruction of the 30S ribosomal subunit from randomly oriented particles. J. Mol. Biol. 178:677–698.

    Article  PubMed  CAS  Google Scholar 

  • Vigers, G. P. A., Crowther, R. A., and Pearse, B. M. F. (1986). Location of the 100 kd-50 kd accesssory proteins in clathrin coats. EMBO J. 5:2079–2085.

    PubMed  CAS  Google Scholar 

  • Wallis, J. W., Miller, T. R., Lerner, C. A., and Kleerup, E. C. (1989). Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8(4):297–303.

    Article  PubMed  CAS  Google Scholar 

  • Whitted, T. (1980). An improved illumination model for shaded display. Comm. ACM 23:343–349.

    Article  Google Scholar 

  • Winslow, J. L., Bjerknes, M., and Cheng, H. (1987). Three-dimensional reconstruction of biological objects using a graphics engine. Comput. Biomed. Res. 20:583–602.

    Article  PubMed  CAS  Google Scholar 

  • Wood, L. (1990). Let your computer do the molding. Inf. Week, April 16:38–40.

    Google Scholar 

  • Young, J. J., Roger, S. M., Groves, P. M., and Kinnamon, J. C. (1987). Three-dimensional reconstruction from serial micrographs using the IBM PC. J. Electron Microsc. Tech. 6:207–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leith, A. (1992). Computer Visualization of Volume Data in Electron Tomography. In: Frank, J. (eds) Electron Tomography. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2163-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2163-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2165-2

  • Online ISBN: 978-1-4757-2163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics