Computer Visualization of Volume Data in Electron Tomography

  • ArDean Leith


Visualization of the results of electron microscopic (EM) tomography is crucial to extracting the most meaningful biological information from a reconstruction. Choosing the most appropriate technique allows the user to draw better conclusions about structures. For some types of EM tomography such as reconstructions from tilted thick sections, the display of results is the most time-consuming step of the reconstruction. The choice of visualization methods will also determine the format in which the reconstruction can be viewed and published. For these reasons methods for the display and visualization of reconstructions are of great interest to investigators who use EM tomography as a tool for their research.


IEEE Computer Society Volume Rendering Surface Rendering Shade Surface Computer Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artzy, E., Frieder, G., and Herman, G. T. (1981). The theory, design, implementation, and evaluation of a three dimensional surface detection algorithm. Comput. Gr. Image Process. 15:1–24.CrossRefGoogle Scholar
  2. Barillot, C., Gibaud, B., Lis, O., Min, L. L., Bouliou, A., Certen, L. G., Collorec, R., Coatrieux, J. L. (1988). Computer graphics in medicine: A survey. CRC Crit. Rev. Biomed. Eng. 15:269–307.Google Scholar
  3. Becker, S. C. and Barrett, W. A. (1990). Interactive morphometrics from three-dimensional surface images, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 418–425. IEEE Computer Society Press, Los Alamitos, CA.CrossRefGoogle Scholar
  4. Borland, L., Harauz, G., Gahr, G., and van Heel, M. (1989). Three-dimensional reconstruction of a human metaphase chromosome. Eur. J. Cell Biol. 48(Suppl. 25):149–152.Google Scholar
  5. Cappelletti, J. D. and Rosenfeld, A. (1989). Three-dimensional boundary following. Comput. Vision, Gr. Image Process. 48:80–92.CrossRefGoogle Scholar
  6. Chen, L., Herman, G. T., Reynolds, R. A. and Udupa, J. K. (1985). Surface shading in the cuberille environment. IEEE Corput. Gr. Appl. 5:33–43.Google Scholar
  7. Christiansen, H. and Sederberg, T. W. (1978). Combination of complex contour line definitions into polygonal element mosaics. Comput. Gr. 12:187–192.CrossRefGoogle Scholar
  8. Christiansen, H. and Stephenson, M. (1984). Overview of the MOVIE.BYU software system, in Proc. 5th Int. Conf. Vehicle Structural Mech., pp. 117–185. S. A. E., Warrendale, PA.Google Scholar
  9. Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and Teeter, B. C. (1988). Two algorithms for the three-dimensional reconstruction of tomographs. Med. Phys. 15:320–327.PubMedCrossRefGoogle Scholar
  10. Cook, L. T., Dwyer, S. J., Batnitzky, S., and Lee, K. R. (1983). A three-dimensional display system for diagnostic imaging applications. IEEE Comput. Gr. Appl. 3:13–19.CrossRefGoogle Scholar
  11. DeRosier, D. J. and Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134.Google Scholar
  12. Dhawan, A. P., Misra, S., Thomas, S. R. (1990). Knowledge-based analysis and recognition of 3D image of human chest-cavity, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 162–169. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  13. Drebin, R. A., Carpenter, L., and Hanrahan, P. (1988). Volume rendering. Comput. Gr. 22(4):65–74.CrossRefGoogle Scholar
  14. Ferwerda, J. G. (1982). The World of 3D, a Practical Guide to Stereo Photography. Nertherlands Society for Stereo Photography, Haven, Netherlands.Google Scholar
  15. Frank, J. (1989). Three dimensional imaging techniques in electron microscopy. BioTechnigues 7:164–173.Google Scholar
  16. Frenkel, K. A. (1989). Volume rendering. Comm. ACM 32(4):426–435.CrossRefGoogle Scholar
  17. Fuchs, H., Keder, Z. M., and Uselton, S. P. (1977). Optimal surface reconstruction from planar contours. Comm. ACM 20:693–702.CrossRefGoogle Scholar
  18. Fujimoto, A., Tanaka, T., and Iwata, K. (1986). ARTS: Accelerated ray tracing system. IEEE Comput. Gr. Appl. 6:16–26.CrossRefGoogle Scholar
  19. Garcia, E. V., Herbst, M. D., Cooke, C. D., Ezquerra, N. F., Evans, B. L., Folds, R. D., and De Puey, E. G. (1990). In Proc. First Conf. on Visualization in Biomedical Computing, pp. 157–161. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  20. Goldwasser, S. M. (1986). Rapid techniques for the display and manipulation of 3-D biomedical data, in Proc. NCGA Computer Graphics 86, Anaheim, CA.Google Scholar
  21. Gordon, D. and Reynolds, R. A. (1985). Image space shading of 3-dimensional objects. Comput. Vision, Gr. Image Process. 29:361–376.CrossRefGoogle Scholar
  22. Gordon, D. and Udupa, J. K. (1989). Fast surface tracking in three dimensional binary images. Comput. Vision, Gr. Image Process. 45:196–214.CrossRefGoogle Scholar
  23. Gouraud, H. (1971). Continuous shading of curved surfaces. IEEE Trans. Comput. C-20:623–628.CrossRefGoogle Scholar
  24. Greenberg, D. P. (1989). Light reflection models for computer graphics. Science 244:166–173.PubMedCrossRefGoogle Scholar
  25. Harauz, G. and Ottensmeyer, F. P. (1984). Nucleosome reconstruction via phosphorus mapping. Science 226:936–940.PubMedCrossRefGoogle Scholar
  26. Heffernan, P. B. and Robb, R. A. (1985). A new method for shaded surface display of biological and medical images. IEEE Trans. Med. Images MI-4:26–38.CrossRefGoogle Scholar
  27. Herman, G. T. and Liu, H. K. (1979). Three-dimensional display of human organs from computed tomograms. Comput. Gr. Image Process. 9:1–21.CrossRefGoogle Scholar
  28. Hersh, J. S. (1990). A survey of modeling representations and their applications to biomedical visualization and simulation, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 432–441. IEEE Computer Society Press, Los Alamitos, CA.CrossRefGoogle Scholar
  29. Hodges, L. F. and McAllister, D. F. (1989). Computing stereographic views, in ACM Siggraph 89 Course Notes, pp. 4.1–4.31. ACM.Google Scholar
  30. Hohne, K. H. and Bernstein, R. (1986). Shading 3D-images from C1 using gray-level gradients. IEEE Trans. Med. Imaging MI-5:45–47.CrossRefGoogle Scholar
  31. Jimenez, A., Santisteban, A., Carazo, J. M., and Carrascosa, J. L. (1986). Computer graphic display method for visualizing three-dimensional biological structures. Science 232:1113–1115.Google Scholar
  32. Johnson, E. M. and Capowski, J. J. (1983). A system for the three-dimensional reconstruction of biological structures. Comput. Biomed. Res. 16:79–87.PubMedCrossRefGoogle Scholar
  33. Kaufman, A., Yagel, R., and Bakalash, R. (1990). Direct interaction with a 3D Volumetric environment, Computer Graphics 24:33–34.CrossRefGoogle Scholar
  34. Leith, A., Marko, M., and Parsons, D. (1989). Computer graphics for cellular reconstruction. IEEE Comput. Gr. Appl. 9:16–23.CrossRefGoogle Scholar
  35. Lenz, R., Gudmundsson, B., Lindskog, B., Danielsson, P. E. (1986). Display of density values. IEEE Comput. Gr. Appl. 6:20–29.CrossRefGoogle Scholar
  36. Lepault, J. and Leonard, K. (1985). Three-dimensional structure of unstained, frozen-hydrated extended tails of bacteriophage T4. J. Mol. Biol. 182:431–441.PubMedCrossRefGoogle Scholar
  37. Levoy, M. (1988). Display of surfaces from volume data. IEEE Comput. Gr. Appl. 8:29–37.CrossRefGoogle Scholar
  38. Levoy, M., Fuchs, H., Pizer, S. M., Rosenman, J., Chaney, E. L., Sherouse, G. W., Interrante, V., and Keil, J. (1990). Volume rendering in radiation treatment planning, in Proc. First Conf. on Visualization in Biomedical Computing. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  39. Levoy, M. and Whitaker, R. (1990). Gaze directed volume rendering. Comput. Gr. 24:217–223.CrossRefGoogle Scholar
  40. Liu, H. K. (1977). Two- and three-dimensional boundary detection. Comput. Gr. Image Process. 6:123–134.CrossRefGoogle Scholar
  41. Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. Comput. Gr. 21(4 ):163–169.CrossRefGoogle Scholar
  42. Love, S. (1989). Three-dimensional hardcopy, in ACM Siggraph 89 Course Notes, pp. 5.1–5.32. ACM.Google Scholar
  43. Luther, P. (1989). Three-dimensional reconstruction of the Z-line in fish muscle. Eur. J. Cell Biol. 48(Suppl. 25):154–156.Google Scholar
  44. Marko, M., Leith, A., and Parsons, D. (1988). Three-dimensional reconstruction of cell from serial sections and whole-cell mounts using multilevel contouring of stereo micrographs. J. Electron Microsc. Tech. 9:395 411.Google Scholar
  45. McEwen, B. F. G., Radermacher, M., Grassucci, R. A., Turner, J. N., and Frank, J. (1986). Tomograhic three-dimensional reconstruction of cilia ultrastructure from thick sections. Proc. Nat. Acad. Sci. USA 83:9040–9044.PubMedCrossRefGoogle Scholar
  46. McMillan, D., Johnson, R., and Mosher, C. (1989). Volume rendering on the TAAC-1. SunTech J. 2:52–58.Google Scholar
  47. Namba, K. and Caspar, D. L. D. (1985). Computer graphics representation of levels of organization in tobacco mosaic virus structure. Science 227:773–776.PubMedCrossRefGoogle Scholar
  48. Ney, D., Fishman, E. K., and Magid, D. (1990a). Three-dimensional imaging of computed tomography: Techniques and applications, in Proc. First Conf. on Visualization in Biomedical Computing. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  49. Ney, D., Fishman, E. K., Magid, D., and Drebin, R. A. (1990b). Volumetric rendering of computed tomography data: Principles and techniques. IEEE Comput. Gr. Appl. 10:24–32.CrossRefGoogle Scholar
  50. Oettl, H., Hegerl, R., and Hoppe, W. (1983). Three-dimensional reconstruction and averaging of 50S ribosome subunits of Escherichia coli from electron micrographs. J. Mol. Biol. 161:431–450.CrossRefGoogle Scholar
  51. Phong, B. T. (1975). Illumination for computer generated pictures. Comm. ACM 18:311–317.CrossRefGoogle Scholar
  52. Pizer, S. M., Fuchs, H., Mosher, C., Lifshitz, L., Abram, G. D., Ramanathan, S., Whitney, B., Rosenman, J. G., Staab, E. V., Chaney, E. L., and Sherouse, G. (1986). 3-D shaded graphics in radiotherapy and diagnostic imaging, in Proc. NCGA Computer Graphics 86. Anaheim, CA.Google Scholar
  53. Porter, T., and Duff, T. (1984). Compositing digital images. Comput. Gr. 18(3):253–259.CrossRefGoogle Scholar
  54. Radermacher, M. and Frank, J. (1984). Representation of three-dimensionally reconstructed objects in electron microscopy by surfaces of equal density. J. Microsc. 136:77–85.PubMedCrossRefGoogle Scholar
  55. Robb, R. A. and Barillot, C. (1989). Interactive display and analysis of 3-D medical images. IEEE Trans. Med. Imaging 8:217–226.PubMedCrossRefGoogle Scholar
  56. Rusinek, H. and Mourino, M. (1989). Interactive graphic editor for analysis and enhancement of medical images. Comput. Biomed. Res. 16:79–87.Google Scholar
  57. Saxton, W. O. (1985). Computer generation of shaded images of solids and surfaces. Ultramicroscopy 16:387–394.CrossRefGoogle Scholar
  58. Schlusselberg, D. S., Smith, W. R., and Woodward, D. J. (1986). Three-dimensional display of medical image volumes, in Proc. NCGA Computer Graphics86. Anaheim, CA.Google Scholar
  59. Shantz, M. (1981). Surface defiinition for branching, contour defined objects. Comput. Gr. 15:242–259.CrossRefGoogle Scholar
  60. Skogland, U., Anderson, K., Stranberg, and Daneholt, B. (1986). Three-dimensional structure of a specific pre-messenger RNP particle established by electron microscope tomography. Nature 319:560–564.CrossRefGoogle Scholar
  61. Stracher, M. A., Goiten, M., and Rowell, D. (1989). Evaluation of volumetric differences through 3-dimensional display of distance of closest approach. Radiat. Oncol. Biol. Phys. 17:1095–1098.CrossRefGoogle Scholar
  62. Suh, D. Y., Mersereau, R. M., Eisner, R. L., Pettigrew, R. I. (1990). Automatic boundary detection on cardiac magnetic resonance image sequences for four dimensional visualization of left ventricle, in Proc. First Conf. on Visualization in Biomedical Computing, pp. 149–156. IEEE Computer Society Press, Los Alamitos, CA.CrossRefGoogle Scholar
  63. Tiede, U., Hoehne, K. H., Bomans, M., Pommert, A., Reimer, M., and Weibecke, G. (1990). Investigation of medical 3D-rendering algorithms. IEEE Comput. Gr. Appl. 10:41–53.CrossRefGoogle Scholar
  64. Udupa, J. and Herman, G. (1989). Volume rendering versus surface rendering. Comm. ACM 32:1364–1367.Google Scholar
  65. Udupa, J. K. and Hung, H. (1990). Surface versus volume rendering: A comparative assessment, in Proc. First Conf. on Visualization in Biomedical Computing. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  66. Upson, C. and Keeler, M. (1988). V-Buffer: Visible volume rendering. Computer Gr. 22(4):59–64.CrossRefGoogle Scholar
  67. van Heel, M. (1983). Stereographic representation of three-dimensional density distributions. Ultramicroscopy 11:307–314.Google Scholar
  68. Vannier, M. W., Marsh, J. L., and Warren, J. O. (1983). Three dimensional computer graphics for craniofacial surgical planning and evaluation. Comput. Gr. 17(3):263–273.CrossRefGoogle Scholar
  69. Verschoor, A., Frank, J., Radermacher, M., Wagenknecht, T., and Boublik, M. (1984). Threedimensional reconstruction of the 30S ribosomal subunit from randomly oriented particles. J. Mol. Biol. 178:677–698.PubMedCrossRefGoogle Scholar
  70. Vigers, G. P. A., Crowther, R. A., and Pearse, B. M. F. (1986). Location of the 100 kd-50 kd accesssory proteins in clathrin coats. EMBO J. 5:2079–2085.PubMedGoogle Scholar
  71. Wallis, J. W., Miller, T. R., Lerner, C. A., and Kleerup, E. C. (1989). Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8(4):297–303.PubMedCrossRefGoogle Scholar
  72. Whitted, T. (1980). An improved illumination model for shaded display. Comm. ACM 23:343–349.CrossRefGoogle Scholar
  73. Winslow, J. L., Bjerknes, M., and Cheng, H. (1987). Three-dimensional reconstruction of biological objects using a graphics engine. Comput. Biomed. Res. 20:583–602.PubMedCrossRefGoogle Scholar
  74. Wood, L. (1990). Let your computer do the molding. Inf. Week, April 16:38–40.Google Scholar
  75. Young, J. J., Roger, S. M., Groves, P. M., and Kinnamon, J. C. (1987). Three-dimensional reconstruction from serial micrographs using the IBM PC. J. Electron Microsc. Tech. 6:207–217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • ArDean Leith
    • 1
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations