Skip to main content

Viability Kernel of Control Systems

  • Chapter
Nonlinear Synthesis

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 9))

Abstract

Existence of viable (controlled invariant) solutions of a control system is investigated by using the concept of viability kernel of a set (largest closed controlled invariant subset.) Results are exploited to prove convergence of a modified version of the zero dynamics algorithm to a closed viability domain. This is needed to obtain dynamical feedbacks, i.e., differential equations governing the evolution of viable controls. Among such differential equations, the one leading to heavy solutions (in the sense of heavy trends), governing evolution of controls with minimal velocity is singled out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AUBIN J.-P. CELLINA A. (1984) DIFFERENTIAL INCLUSIONS, Springer-Verlag

    Google Scholar 

  2. AUBIN J.-P. FRANKOWSKA H. (1984) Trajectoires lourdes de systèmes contrôlés, Comptes-Rendus de l–Académie des Sciences, PARIS, Série 1, 298, 521–524

    Google Scholar 

  3. AUBIN J.-P. FRANKOWSKA H. (1985) Heavy viable trajectories of controlled systems, Annales de l–Institut Henri Poincaré, Analyse Non Linéaire, 2, 371–395

    Google Scholar 

  4. AUBIN J.-P. FRANKOWSKA H. (1990) SET-VALUED ANALYSIS, Systems and Control: Foundations and Applications, Birkhäuser, Boston, Basel

    Google Scholar 

  5. AUBIN J.-P. (1989) Smallest Lyapunov functions of differential inclusions,J. Diff. & Integral Eqs., 2

    Google Scholar 

  6. AUBIN J.-P. (1990) A survey of viability theory, SIAM J. Control & Optim.

    Google Scholar 

  7. AUBIN J.-P. (to appear) VIABILITY THEORY

    Google Scholar 

  8. BASILE G. MARRO G. (1969) Controlled and conditional invariant subspaces in linear system theory, J. Optim. Theory Appl., 3, 296–315

    Google Scholar 

  9. BYRNES C.I. ANDERSON B.D.O. (1984) Output feedback and generic stabilizability, SIAM J. Control Optim., 22, 362–379

    Google Scholar 

  10. BYRNES C. ISIDORI A. (to appear) The analysis and design of nonlinear feedback systems. I. Zero dynamics and global normal forms

    Google Scholar 

  11. BYRNES C. ISIDORI A. (to appear) The analysis and design of nonlinear feedback systems. II. Global stabilization of minimum phase systems

    Google Scholar 

  12. BYRNES C. ISIDORI A. (to appear) Feedback design from the zero dynamics point of view

    Google Scholar 

  13. BYRNES C. ISIDORI A. (to appear) Output regulation of nonlinear systems

    Google Scholar 

  14. BYRNES C. ISIDORI A. (this volume)

    Google Scholar 

  15. FALCONE M. SAINT-PIERRE P. (1987) Slow and quasi-slow solutions of differential inclusions, J. Nonlin. Anal., T.M.A., 3, 367–377

    Google Scholar 

  16. FRANKOWSKA II. (1990) On controllability and observability of implicit systems, Syst. Control Letters

    Google Scholar 

  17. FRANKOWSKA H. (1990) Some inverse mapping theorems, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire, 3

    Google Scholar 

  18. FRANKOWSKA H. (to appear) SET-VALUED ANALYSIS AND CONTROL THEORY

    Google Scholar 

  19. HADDAD G. (1981) Monotone viable trajectories for functional differential inclusions,J. Diff. Eqs., 42, 1–24

    Google Scholar 

  20. HADDAD G. (1981) Monotone trajectories of differential inclusions with memory,Israel J. Maths., 39, 38–100

    Google Scholar 

  21. ISIDORI A. (1985) NONLINEAR CONTROL SYSTEMS: AN INTRODUCTION, Springer-Verlag Lecture Notes in Control and Information Sciences, Vol. 72

    Book  Google Scholar 

  22. KRENER A. ISIDORI A. (1980) Nonlinear zero distributions,19th IEEE Conf. Decision and Control

    Google Scholar 

  23. KRENER A. J. ISIDORI A. (1983) Linearization by output injection and nonlinear observers, Syst. Si Control Letters, 3, 47–52

    Google Scholar 

  24. KURZHANSKI A. B. FILIPPOVA T. F. (1986) On viable solutions for uncertain systems,IIASA WP

    Google Scholar 

  25. KURZHANSKI A. B. (1985) On the analytical description of the viable solutions of a controlled system, Uspekhi Mat. Nauk, 4

    Google Scholar 

  26. KURZHANSKI A. B. (1986) On the analytical properties of viability tubes of trajectories of differential systems, Doklady Acad. Nauk SSSR, 287, 1047–1050

    Google Scholar 

  27. MARRO G. (1975) FONDAMENTI DI TEORIA DEI SISTEMI, Patron Editore

    Google Scholar 

  28. MONACO S. NORMAND-CYROT D. (1988) Zero dynamics of sampled linear systems, Syst. Control Letters

    Google Scholar 

  29. QUINCAMPOIX M. (to appear) Frontières de domaines d’invariance et de viabilité pour des inclusions différentielles avec contraintes,Comptes-Rendus de l’Académie des Sciences, PARIS, Série 1

    Google Scholar 

  30. SILVERMAN L. M. (1969) Inversion of multivariable linear systems, IEEE Trans. Automatic Control, 14, 270–276

    Google Scholar 

  31. WONHAM W.M. (1985) LINEAR MULTIVARIABLE CONTROL. A GEOMETRIC APPROACH, Springer-Verlag

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aubin, JP., Frankowska, H. (1991). Viability Kernel of Control Systems. In: Byrnes, C.I., Kurzhansky, A.B. (eds) Nonlinear Synthesis. Progress in Systems and Control Theory, vol 9. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-2135-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2135-5_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3484-1

  • Online ISBN: 978-1-4757-2135-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics