Advertisement

Molecular Interactions of Crystallins in Relation to Optical Properties

  • C. Slingsby
  • B. Bax
  • R. Lapatto
  • O. A. Bateman
  • H. Driessen
  • P. F. Lindley
  • D. S. Moss
  • S. Najmudin
  • T. L. Blundell
Chapter
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

The transparency of the lens depends on an even distribution of protein and water over distances comparable to the wavelength of light, while the degree of refraction is controlled partly by the ability of the lens to change shape. The core regions of certain lenses such as carp and rat have an extremely high refractive index as a result of high protein concentration, which confers rigidity on that region of the lens. By contrast the outer regions of these lenses, like the complete human lens, have a lower proportion of protein to water and are malleable (van Heyningen, 1976; Philipson, 1969; Fagerholm et al., 1981). Furthermore, there is an increasing protein concentration gradient from the periphery to the core of the lens, leading to a gradient of refractive index that almost abolishes spherical aberration (Fernald and Wright, 1983; Sivak, 1985).

Keywords

Human Lens Lens Protein Senile Cataract Ribbon Diagram Mouse Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcala, J., Katar, M., Rudner, G., and Maisel, H., 1988, Human beta crystallins: Regional and age related changes, Curr. Eye Res. 7:353–359.PubMedCrossRefGoogle Scholar
  2. Argos, P., 1988, An investigation of protein subunit and domain interfaces, Protein Eng. 2:101–113.PubMedCrossRefGoogle Scholar
  3. Askren, C. C., Yu, N.-T., and Kuck, J. F. R. Jr.,1979, Variation of the concentration of sulphydryl along the visual axis of aging lenses by Raman optical dissection technique, Exp. Eye Res. 29:647–54.PubMedCrossRefGoogle Scholar
  4. Bax, B., and Slingsby C., 1989, Crystallization of a new form of the eye lens protein ßB2-crystallin, J. Mol Biol 208:715–717.PubMedCrossRefGoogle Scholar
  5. Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L., and Slingsby, C., 1990, X-ray analysis of ßB2-crystallin and evolution of oligomeric lens proteins, Nature 347:776–780.PubMedCrossRefGoogle Scholar
  6. Benedek, G. B., Clark, J. I., Serralach, E. N., Young, C. Y., Mengel, L., Sauke, T., Bagg, A., and Benedek, K., 1979, Light scattering and reversible cataracts in the calf and human lens, Phil Trans. R. Soc. [A] 293 :329–340.CrossRefGoogle Scholar
  7. Berbers, G. A. M., Boermann, O. C., Bloemendal, H., and de Jong, W. W., 1982, Primary gene products of bovine ß-crystallin and reassociation of its aggregates, Eur. J. Biochem. 128:495–502.PubMedCrossRefGoogle Scholar
  8. Berbers, G. A. M., Hoekman, W. A., Bloemendal, H., de Jong, W. W., Kleinschmidt, T., and Braunitzer, G., 1983, Proline and alanine rich N-terminal extension of the basic bovine ß-crystallin B1 chains, FEBS Lett. 161:225–229.PubMedCrossRefGoogle Scholar
  9. Berbers, G. A. M., Hoekman, W. A., Bloemendal, H., de Jong, W. W., Kleinschmidt, T., and Braunitzer, G., 1984, Homology between the primary structures of the major β-crystallin chains, Eur. J. Biochem. 139:467–479.PubMedCrossRefGoogle Scholar
  10. Bernai, J. D., 1964, The structure of liquids, ProC., R. Soc. [A] 280:299–322.CrossRefGoogle Scholar
  11. Bindels, J. G., Koppers, A., and Hoenders, H. J., 1981, Structural aspects of bovine β-crystallins: Physical characterization including dissociation-association behaviour, Exp. Eye Res. 33:333–343.PubMedCrossRefGoogle Scholar
  12. Bloemendal, H., Hermsen, T., Dunia, I., and Benedetti, E. L., 1982, Association of the crystallins with the plasma membrane, Exp. Eye Res. 35:61–67.PubMedCrossRefGoogle Scholar
  13. Blundell, T., Lindley, P. F., Miller, L. R., Moss, D. S., Slingsby, C., Turnell, W. G., and Wistow, G., 1981, The molecular structure and stability of the eye lens: X-ray analysis of γ-crystallin II, Nature 289:771–777.PubMedCrossRefGoogle Scholar
  14. Blundell, T., Lindley, P. F., Miller, L. R., Moss, D. S., Slingsby, C., Turnell, W. G., and Wistow, G., 1983, Interactions of γ-crystallin in relation to eye-lens transparency., Lens Res. 1:109–131.Google Scholar
  15. Breitman, M. L., Lok, S., Wistow, G., Piatigorsky, J., Treton, J. A., Gold, R. J. M., and Tsui, L.-C., 1984,γ-Crystallin family of the mouse lens: Structural and evolutionary relationships, Proc. Natl. Acad. Sci. U.S.A. 81:7762–7766.PubMedCrossRefGoogle Scholar
  16. Chang, T., Jiang, Y.-J., Chiou, S.-H., and Chang, W.-C., 1988, Carp gamma-crystallin with high methionine content: Cloning and sequencing of the complementary DNA, Biochim. Bio-phys. Acta 951:226–229.CrossRefGoogle Scholar
  17. Croft, L. R., 1973, Amino and carboxy terminal sequence of γ-crystallin from haddock lens, Biochim. Biophys. Acta 295:174–177.PubMedCrossRefGoogle Scholar
  18. de Jong, W. W., 1981, Evolution of lens and crystallins, in: Molecular and Cellular Biology of the Eye Lens (H. Bloemendal, ed.), John Wiley & Sons, New York, pp. 221–278.Google Scholar
  19. Delaye, M., and Tardieu, A., 1983, Short-range order of crystallin proteins accounts for eye lens transparency., Nature 302:415–417.PubMedCrossRefGoogle Scholar
  20. Fagerholm, P. P., Philipson, B. T., and Linstrom, B., 1981, Normal human lens—the distribution of protein, Exp. Eye Res. 33:615–620.PubMedCrossRefGoogle Scholar
  21. Fernald, R. D., and Wright, S. E., 1983, Maintenance of optical quality during crystalline lens growth, Nature 301:618–620.PubMedCrossRefGoogle Scholar
  22. Harding, J. J., and Crabbe, M. J. C., 1984, in: The Eye: The Lens: development, proteins, metabolism, and cataract, vol. IB, 3rd ed. (H. Davson, ed.), Academic Press, London, pp. 207–492.Google Scholar
  23. Herbrink, P., van Westreenen, H., and Bloemendal, H., 1975, Further studies on the polypeptide chains of γ-crystallin, Exp. Eye Res. 20:541–548.PubMedCrossRefGoogle Scholar
  24. Hum, T. P., and Augusteyn, R. C., 1987, The nature of disulphide bonds in rat lens proteins, Curr. Eye Res. 6:1103–1108.PubMedCrossRefGoogle Scholar
  25. Janin, J., Miller, S., and Chothia, C., 1988, Surface, subunit interfaces and interior of oligomeric proteins, J. Mol. Biol. 204:155–164.PubMedCrossRefGoogle Scholar
  26. Kuck, J. F. R., Yu, N.-T., and Askren, C. C., 1982, Total sulphydryl by Raman spectroscopy in the intact lens of several species: Variations in the nucleus and along the optical axis during aging, Exp. Eye Res. 34:23–37.PubMedCrossRefGoogle Scholar
  27. Li, L.-K., Roy, D., and Spector, A., 1986, Changes in lens protein in concentric fractions from individual normal human lenses, Curr. Eye Res. 5:127–135.PubMedCrossRefGoogle Scholar
  28. Lubsen, N. H., Aarts, H. J. M., and Schoenmakers, J. G. G., 1988, The evolution of lenticular proteins: The β- and γ-crystallin super gene family., Prog. Biophys. Mol. Biol. 51:47–76.PubMedCrossRefGoogle Scholar
  29. Meakin, S. O., Breitman, M. L., and Tsui, L.-C., 1985, Structural and evolutionary relationships among five members of the human γ-crystallin gene family., Mol. Cell Biol. 5:1408–1414.PubMedGoogle Scholar
  30. Philipson, B., 1969, Distribution of protein within the normal rat lens, Invest. Ophthalmol. 8:258–270.PubMedGoogle Scholar
  31. Richardson, J. S., 1977, β-Sheet topology and the relatedness of proteins, Nature 268:495–500.PubMedCrossRefGoogle Scholar
  32. Russell, P., Meakin, S. O., Hohman, T. C., Tsui, L.-C., and Breitman, M. L., 1987, Relationships between proteins encoded by three human γ-crystallin genes and distinct polypeptides in the eye lens, Mol. Cell Biol. 7:3320–3323.PubMedGoogle Scholar
  33. Sergeev, Y. V., Chirgadze, Y. N., Mylvaganam, S. E., Driessen, H., Slingsby, C., and Blundell, T. L., 1988, Surface interactions of γ-crystallins in the crystal medium in relation to their association in the eye lens, Proteins Struct. Fund. Genet. 4:137–147.CrossRefGoogle Scholar
  34. Siezen, R. J., Fisch, M. R., Slingsby, C., and Benedek, G. B., 1985, Opacification of γ-crystallin solutions from calf lens in relation to cold cataract formation, Proc. Natl. Acad. Sci. U.S.A. 82:1701–1705.PubMedCrossRefGoogle Scholar
  35. Siezen, R. J., Anello, R. D., and Thomson, J. A., 1986, Interactions of lens proteins. Concentration dependence of β-crystallin aggregation, Exp. Eye Res. 43:293–303.PubMedCrossRefGoogle Scholar
  36. Siezen, R. J., Thomson, J. A., Kaplan, E. D., and Benedek, G. B., 1987, Human lens γ-crystallins: Isolation, identification, and characterization of the expressed gene products, Proc. Natl. Acad. Sci. U.S.A. 84:6088–6092.PubMedCrossRefGoogle Scholar
  37. Siezen, R. J., Wu, E., Kaplan, E., Thomson, J. A., and Benedek, G. B., 1988, Rat lens γ-crystallins, J. Mol. Biol. 199:475–490.PubMedCrossRefGoogle Scholar
  38. Sivak, J. G., 1985, Optics of the crystalline lens, Am. J. Optom. Physiol. Opt. 62:299–308.PubMedCrossRefGoogle Scholar
  39. Slingsby, C., 1985, Structural variation in lens crystallins, Trends Biochem. Sci. 10:281–284.CrossRefGoogle Scholar
  40. Slingsby, C., and Bateman, O. A., 1990, Quaternary interactions in eye lens β-crystallins: Basic and acidic subunits of β-crystallins favor heterologous association, Biochemistry 29:6592–6599.PubMedCrossRefGoogle Scholar
  41. Slingsby, C., Miller, L. R., and Berbers, G. A. M., 1982, Preliminary x-ray crystallographic study of the principle subunit of the lens structural protein, bovine β-crystallin, J. Mol. Biol. 157:191–194.PubMedCrossRefGoogle Scholar
  42. Slingsby, C., Driessen, H. P. C., Mahadevan, D., Bax, B., and Blundell, T. L., 1988a, Evolutionary and functional relationships between the basic and acidic β-crystallins, Exp. Eye Res. 46:375–403.PubMedCrossRefGoogle Scholar
  43. Slingsby, C., Driessen, H. P. C., White, H., Mylvaganam, S., Najmudin, S., Bax, B., Bibby, M. A., Lindley, P. F., Moss, D. S., and Blundell, T. L., 1988b, Molecular interactions in relation to cataract, in: Molecular Biology of the Eye: Genes, Vision, and Ocular Disease, (J. Piatigorsky, T. Shinohara, and P. S. Zelenka, eds.), Alan R. Liss, New York, pp. 419–426.Google Scholar
  44. Spector, A., 1984, The search for a solution to senile cataracts, Invest. Ophthalmol. Vis. Sci. 25:130–146.PubMedGoogle Scholar
  45. Summers, L., Wistow, G., Marebor, M., Moss, D. S., Lindley, P., Slingsby, C., Blundell, T., Bartunik, H., and Bartels, K., 1984, X-ray studies of the lens specific proteins: The crystallins, Peptide Protein Rev. 3:147–168.Google Scholar
  46. Summers, L. J., Slingsby, C., Blundell, T. L., den Dünnen, J. T., Moormann, R. J. M., and Schoenmakers, J. G. G., 1986, Structural variation in mammalian γ-crystallins based on computer graphics analyses of human, rat and calf sequences, Exp. Eye Res. 43:77–92.PubMedCrossRefGoogle Scholar
  47. van Heyningen, R., 1976, Experimental studies on cataract, Invest. Ophthalmol. 15:685–697.Google Scholar
  48. White, H. E., Driessen, H. P. C., Slingsby, C., Moss, D. S., and Lindley, P. F., 1989, Packing interactions in the eye-lens: Structural analysis, internal symmetry and lattice interactions of bovine γIVa-crystallin, J. Mol. Biol. 207:217–235.PubMedCrossRefGoogle Scholar
  49. Wistow, G. J., and Piatigorsky, J., 1988, Lens crystallins: The evolution and expression of proteins for a highly specialized tissue, Annu. Rev. Biochem. 57:479–504.PubMedCrossRefGoogle Scholar
  50. Wistow, G., Slingsby, C., Blundell, T, Driessen, H., de Jong, W., and Bloemendal, H., 1981, Eye lens proteins: The three dimensional structure of ß-crystallin predicted from monomelic γ-crystallin, FEBS Lett. 133:9–16.PubMedCrossRefGoogle Scholar
  51. Wistow, G., Turnell, B., Summers, L., Slingsby, C., Moss, D., Miller, L., Lindley, P., and Blundell, T., 1983, X-ray analysis of the eye lens protein γ-II cry stallin at 1.9 Å resolution, J. Mol. Biol. 170:175–202.PubMedCrossRefGoogle Scholar
  52. Yu, N.-T, De Nagel, D. C., Pruett, P. L., and Kuck, J. F. R., Jr., 1985, Disulphide bond formation in the eye lens, Proc. Natl. Acad. Sci. U.S.A. 82:207–214.CrossRefGoogle Scholar
  53. Zigler, J. S., Jr., and Sidbury, J. B. Jr., 1973, Structure of calf lens β-crystallins, Exp. Eye Res. 16:207–214.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • C. Slingsby
    • 1
  • B. Bax
    • 1
  • R. Lapatto
    • 1
  • O. A. Bateman
    • 1
  • H. Driessen
    • 1
  • P. F. Lindley
    • 1
  • D. S. Moss
    • 1
  • S. Najmudin
    • 1
  • T. L. Blundell
    • 1
  1. 1.Department of CrystallographyLaboratory of Molecular BiologyBirkbeck College, LondonGreat Britain

Personalised recommendations