Discrimination of Blur in Normal and Amblyopic Eyes

  • Kenneth J. Ciuffreda
Part of the Perspectives in Vision Research book series (PIVR)


The ability to respond and accommodate appropriately to a defocused and perceptually blurred target requires one to be able to discriminate changes in overall contrast and edge sharpness (Fry., 1955; Fujii et al, 1970; Hamerly and Dvorak, 1981; Watt and Morgan, 1983; Ciuffreda and Rumpf, 1985; Ciuf-freda et al., 1987) as well as other attributes (such as chromatic aberration, spherical aberration, etc.) of the retinal image (Fry., 1955; Campbell and West-heimer, 1959; Fujii et al., 1970). Inability to do so would adversely affect accommodative accuracy and quality of the retinal image (Fry., 1955; Fujii et al., 1970; Ciuffreda and Rumpf, 1985). This, in turn, could impair one’s visual resolution and visual efficiencY., perhaps even leading to general visual discomfort. Such results might be predicted to be found, and indeed exaggerated, in amblyopic eyes in which overall reduced sensitivity is the norm (Schapero, 1971; Ciuffreda et al., 1991).


Spatial Frequency Retinal Image Chromatic Aberration Luminance Profile Anisometropic Amblyopia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradley, A., and Freeman, R., 1981, Contrast sensitivity in anisometropia amblyopia, Invest. Ophthalmol. Vis. Sci. 21:467–476.PubMedGoogle Scholar
  2. Bradley, A., and Ohzawa, I., 1986, A comparison of contrast detection and discrimination, Vision Res. 26:991–997.PubMedCrossRefGoogle Scholar
  3. Brock, F. W., and Givner, I., 1952, Fixation anomalies in amblyopia, Arch. Ophthalmol. 47:775–786.CrossRefGoogle Scholar
  4. Burian, H. M., and von Noorden, G. K., 1974, Binocular Vision and Ocular MotilitY., C. V. Mosby., St. Louis.Google Scholar
  5. Campbell, F. W., 1957, The depth of field of the human eye, Optica Acta 4:157–164.CrossRefGoogle Scholar
  6. Campbell, F. W., and Westheimer, G., 1959, Factors influencing accommodation responses of the human eye, J. Opt. Soc. Am. 49:568–571.PubMedCrossRefGoogle Scholar
  7. Campbell, F. W., and Kulikowski, J. J., 1972, The visual evoked potential as a function of contrast of a grating pattern, J. Physiol. (Lond.) 222:345–356.Google Scholar
  8. Ciuflfreda, K. J., and Fisher, S. K., 1987, Impairment of contrast discrimination in amblyopic eyes, Ophthalmic. Physiol. Opt. 7:461–467.CrossRefGoogle Scholar
  9. Ciuflfreda, K. J., and Kenyon, R. V., 1983, Accommodative vergence and accommodation in normals, amblyopes and strabismics, in: Vergence Eye Movements: Basic and Clinical Aspects (C. M. Schor and K. J. Ciuflfreda, eds.), Butterworth, Boston, pp. 101–173.Google Scholar
  10. Ciuflfreda, K. J., and Rumpf, D., 1985, Contrast and accommodation in amblyopia, Vision Res. 25:1445–1457.CrossRefGoogle Scholar
  11. Ciuflfreda, K. J., Kenyon, R. V., and Stark, L., 1979, Saccadic intrusions in strabismus, Arch. Ophthalmol. 97:1673–1679.CrossRefGoogle Scholar
  12. Ciuflfreda, K. J., Kenyon, R. V., and Stark, L., 1980, Increased drift in amblyopic eyes, Br. J. Ophthalmol. 64:7–14.CrossRefGoogle Scholar
  13. Ciuflfreda, K. J., Hokoda, S. C., Hung, G. K., and Semmlow, J. L., 1984, Accommodative stimulus/response function in human amblyopia, Doc. Ophthalmol. 56:303–326.CrossRefGoogle Scholar
  14. Ciuflfreda, K. J., Dul, M., and Fisher, S. K., 1987, Higher-order spatial frequency contribution to accommodative accuracy in normal and amblyopic observers, Clin. Vis. Sci. 1:219–229.Google Scholar
  15. Ciuflfreda, K. J., Levi, D. L., and Selenow, A., 1991, Amblyopia: Basic and Clinical Aspects, Butterworth, Boston.Google Scholar
  16. Duke-Elder, S., and Abrams, D., 1970, System of OphthalmologY., Vol. 5, Ophthalmic Optics and Refraction, C. V. Mosby., St. Louis.Google Scholar
  17. Fincham, E. F., 1951, The accommodation reflex and its stimulus, Br. J. Ophthalmol. 35:381–393.PubMedCrossRefGoogle Scholar
  18. Fry, G. A., 1955, Blur of the Retinal Image, Ohio State University Press, Columbus.Google Scholar
  19. Fujii, K., Kondo, K., and Kasai, T., 1970, An analysis of the human eye accommodation system, Osaka Univ. Tech. Rep. 20:221–236.Google Scholar
  20. Hamerly, J. R., and Dvorak, C. A., 1981, Detection and discrimination of blur in edges and lines, J. Opt. Soc. Am. 71:448–452.CrossRefGoogle Scholar
  21. Hartinger, H., 1951, Uber ein neues Refraktometer, in: 57th Meeting Deutsch Optisch Gasellschaft, Munich, pp. 105–108.Google Scholar
  22. Hess, R. F., Bradley, A., and Piotrowski, L., 1983, Contrast coding in amblyopia I. Differences in the neural basis of human amblyopia, Proc. R. Soc. Lond. [Biol] 217:309–330.CrossRefGoogle Scholar
  23. Hung, G. K., Ciuflfreda, K. J., Semmlow, J. L., and Hokoda, S. C., 1983, Model of static accommodative behavior in human amblyopia, IEEE Trans. Biomed. Eng. 30:665–672.PubMedCrossRefGoogle Scholar
  24. Krumholz, D. M., Fox, R. S., and Ciuflfreda, K. J., 1986, Short-term changes in tonic accommodation, Invest. Ophthalmol. Vis. Sci. 27:555–557.Google Scholar
  25. Lawwill, T., 1968, Local adaptation in functional amblyopia, Am. J. Ophthalmol. 65:903–906.PubMedGoogle Scholar
  26. Legge, G. E., and Kersten, D., 1987, Contrast discrimination in peripheral vision, J. Opt. Soc. Am. 4:1594–1598.CrossRefGoogle Scholar
  27. Legge, G. E., Mullen, K. T., Woo, G. C., and Campbell, F. W., 1987, Tolerance to visual defocus, J. Opt. Soc. Am. 4:851–863.CrossRefGoogle Scholar
  28. Phillips, S. R., 1974, Ocular Neurological Control Systems: Accommodation and the Near Response Triad, Ph.D. dissertation, University of California, Berkeley.Google Scholar
  29. Ronchi, L., and Molesini, G., 1975, Depth of focus in peripheral vision, Ophthalmic. Res. 7:152–157.CrossRefGoogle Scholar
  30. Schapero, M., 1971, Amblyopia, Chilton, New York.Google Scholar
  31. Stephens, B. R., and Banks, M. S., 1987, Contrast discrimination in human infants, J. Exp. Psychol. Hum. Percept. Perform. 13:558–565.PubMedCrossRefGoogle Scholar
  32. Watt, R. J., and Morgan, M. J., 1983, The recognition and representation of edge blur: Evidence for spatial primitives in human vision, Vision Res. 23:1465–1477.PubMedCrossRefGoogle Scholar
  33. Wetherill, G. B., and Levitt, H., 1965, Sequential estimation of points on a psychometric function, Br. J. Math. Stat. Psychol. 18:1–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth J. Ciuffreda
    • 1
  1. 1.Department of Vision Sciences, State College of OptometryState University of New YorkNew YorkUSA

Personalised recommendations