The Disruptive Effects of Optical Aids on Retinal Image Stability during Head Movements

  • Frederick A. Miles
Chapter
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

Eye movements exist to aid vision by directing gaze toward objects of particular interest and, should those objects move, by tracking them. There are two basic kinds of eye movements: saccadic, which serve to shift fixation and thereby bring pertinent retinal images into the fovea where vision is most acute, and smooth, which serve to keep those images in the fovea by compensating for movements of the object or the observer. Visual acuity begins to deteriorate significantly when retinal images drift at more than a few degrees per second (Westheimer and McKee, 1975), and it is the smooth eye movements that operate to minimize such drift.

Keywords

Retinal Image Head Rotation Head Turn Otolith Organ Retinal Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J. S., 1971, A theory of cerebellar function, Math. Biosci. 10:25–61.CrossRefGoogle Scholar
  2. Baker, J. F., Perlmutter, S. I., Peterson, B. W., Rude, S. A., and Robinson, F. R., 1987, Simultaneous opposing adaptive changes in cat vestibuloocular reflex direction for two body orientation, Exp. Brain Res. 69:220–224.PubMedCrossRefGoogle Scholar
  3. Baloh, R. W., Lyerly, K., Yee, R. D., and Honrubia, V., 1984, Voluntary control of the human vestibulo-ocular reflex, Ada Otolaryngol. 97:1–6.CrossRefGoogle Scholar
  4. Baloh, R. W., Beykirch, K., Honrubia, V., and Yee, R. D., 1988, Eye movements induced by linear acceleration on a parallel swing, J. Neurophysiol. 60:2000–2013.PubMedGoogle Scholar
  5. Barr, C. C., Schultheis, L. W., and Robinson, D. A., 1976, Voluntary, nonvisual control of the human vestibulo-ocular reflex, Arch. Otolaryngol. 81:363.Google Scholar
  6. Berthoz, A., Melvill Jones, G., and Bégué, A. E., 1981, Differential visual adaptation of vertical canal-dependent vestibulo-ocular reflexes, Exp. Brain Res. 44:19–26.PubMedCrossRefGoogle Scholar
  7. Biguer, B., and Prablanc, C., 1981, Modulation of the vestibuloocular reflex in eye-head orientation as a function of target distance in man, in: Progress in Oculomotor Research (A. F. Fuchs and W. Becker, eds.), Elsevier/North-Holland, New York, pp. 525–530.Google Scholar
  8. Blakemore, C., and Donaghy, M., 1980, Co-ordination of head and eyes in the gaze changing behaviour of cats, J. Physiol. (Lond.) 300:317–335.Google Scholar
  9. Bronstein, A. M., and Gresty, M. A., 1988, Short latency compensatory eye movement responses to transient linear head acceleration: A specific function of the otolith-ocular reflex, Exp. Brain Res. 71:406–410.PubMedCrossRefGoogle Scholar
  10. Buizza, A., Leger, A., Droulez, J., Berthoz, A., and Schmid, R., 1980, Influence of otolithic stimulation by horizontal linear acceleration on optokinetic nystagmus and visual motion perception, Exp. Brain Res. 39:167–176.CrossRefGoogle Scholar
  11. Callan, J. W., and Ebenholtz, S. M., 1982, Directional changes in the vestibular ocular response as a result of adaptation to optical tilt, Vision Res. 22:37–42.PubMedCrossRefGoogle Scholar
  12. Cannon, S. C., Leigh, R. J., Zee, D. S., and Abel, L. A., 1985, The effect of the rotational magnification of corrective spectacles on the quantitative evaluation of the VOR, Acta Otolaryngol. 100:81–88.PubMedCrossRefGoogle Scholar
  13. Collewijn, H., Martins, A. J., and Steinman, R. M., 1983, Compensatory eye movements during active and passive head movements: Fast adaptation to changes in visual magnification, J. Physiol. (Lond.) 340:259–286.Google Scholar
  14. Collewijn, H., Van der Steen, J., Ferman, L., and Jansen, T. C., 1985, Human ocular counterroll: Assessment of static and dynamic properties from electromagnetic scleral coil recordings, Exp. Brain Res. 59:185–196.PubMedCrossRefGoogle Scholar
  15. Davies, P., and Melvill Jones, G., 1976, An adaptive neural model compatible with plastic changes induced in the human vestibulo-ocular reflex by prolonged optical reversal of vision, Brain Res. 103:546–550.PubMedCrossRefGoogle Scholar
  16. Demer, J. L., Porter, F. I., Goldberg, J., Jenkins, H. A., and Schmidt, K., 1989, Adaptation to telescopic spectacles: Vestibulo-ocular reflex plasticity, Invest. Ophthalmol. Vis. Sci. 30:159–170.PubMedGoogle Scholar
  17. Fernandez, C., and Goldberg, J. M., 1976, Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force, J. Neurophysiol. 39:970–1008.PubMedGoogle Scholar
  18. Fernandez, C., Goldberg, J. M., and Abend, W. K., 1972, Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey, J. Neurophysiol. 35:978–997.PubMedGoogle Scholar
  19. Gauthier, G. M., and Robinson, D. A., 1975, Adaptation of the human vestibuloocular reflex to magnifying lenses, Brain Res. 92:331–335.PubMedCrossRefGoogle Scholar
  20. Gonshor, A., and Melvill Jones, G., 1976, Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision, J. Physiol. (Lond.) 256:381–414.Google Scholar
  21. Gresty, M. A., and Bronstein, A. M., 1986, Otolith stimulation evokes compensatory reflex eye movements of high velocity when linear motion of the head is combined with concurrent angular motion, Neurosci. Lett. 65:149–154.PubMedCrossRefGoogle Scholar
  22. Gresty, M. A., Bronstein, A. M., and Barratt, H., 1987, Eye movement responses to combined linear and angular head movement, Exp. Brain Res. 65:377–384.PubMedCrossRefGoogle Scholar
  23. Grossberg, S., 1969, On learning of spatiotemporal patterns by networks with ordered sensory and motor components. 1. Excitatory components of the cerebellum, Stud. Appl. Math. 48:105–132.Google Scholar
  24. Haddad, G. M., Demer, J. L., and Robinson, D. A., 1980, The effect of lesions of the dorsal cap of the inferior olive on the vestibuloocular and optokinetic systems of the cat, Brain Res. 185:265–275.PubMedCrossRefGoogle Scholar
  25. Hine, T., and Thorn, F., 1987, Compensatory eye movements during active head rotation for near targets: Effects of imagination, rapid head oscillation and vergence, Vision Res. 27:1639–1657.PubMedCrossRefGoogle Scholar
  26. Ito, M., 1972, Neural design of the cerebellar motor control system, Brain Res. 40:81–84.PubMedCrossRefGoogle Scholar
  27. Ito, M., and Miyashita, Y., 1975, The effects of chronic destruction of the inferior olive upon visual modification of the horizontal vestibulo-ocular reflex of rabbits, Proc. Jpn. Acad. 51:716–720.Google Scholar
  28. Jongkees, L. B. W., and Phillipszoon, A. J., 1962, Nystagmus provoked by linear accelerations, Acta Physiol. Pharmacol. Neerl. 10:239–247.PubMedGoogle Scholar
  29. Judge, S. J., and Cumming, B. G., 1986, Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation, J. Neurophysiol. 55:915–930.PubMedGoogle Scholar
  30. Lisberger, S. G., 1984, The latency of pathways containing the site of motor learning in the monkey vestibulo-ocular reflex, Science 225:74–76.PubMedCrossRefGoogle Scholar
  31. Lisberger, S. G., Miles, F. A., and Zee, D.S., 1984, Signals used to compute errors in monkey vestibuloocular reflex: Possible role of flocculus, J. Neurophysiol. 52:1140–1153.PubMedGoogle Scholar
  32. Marr, D., 1969, A theory of cerebellar cortex, J. Physiol. (Lond.) 202:437–470.Google Scholar
  33. Mays, L. E., 1984, Neural control of vergence eye movements: Convergence and divergence neurons in midbrain, J. Neurophysiol. 51:1091–1108.PubMedGoogle Scholar
  34. Mays, L. E., Porter, J. D., Gamlin, P. D. R., and Tello, C. A., 1986, Neural control of vergence eye movements: Neurons encoding vergence velocity, J. Neurophysiol. 56:1007–1021.PubMedGoogle Scholar
  35. McKinley, P. A., and Peterson, B.W., 1985, Voluntary modulation of the vestibuloocular reflex in humans and its relation to smooth pursuit, Exp. Brain Res. 60:454–464.PubMedCrossRefGoogle Scholar
  36. Michnovicz, J. J., and Bennett, M. V. L., 1987, Effects of rapid cerebellectomy on adaptive gain control of the vestibulo-ocular reflex in alert goldfish, Exp. Brain Res. 66:287–294.PubMedCrossRefGoogle Scholar
  37. Miles, F. A., 1983, Plasticity in the transfer of gaze, Trends Neurosci. 6:57–60.CrossRefGoogle Scholar
  38. Miles, F. A., 1986, Parametric adjustments in the oculomotor system, in: The Oculomotor and Skeletalmotor System. Progress in Brain Research, Vol. 64 (H.-J. Freund, U. Buttner, B. Cohen, and J. Noth, eds.), Elsevier, Amsterdam, pp. 367–380.CrossRefGoogle Scholar
  39. Miles, F. A., 1987, The role of the cerebellum in adaptive regulation of the vestibulo-ocular reflex, in: Cerebellum and Neuronal Plasticity (M. Glickstein, C. Yeo, and J. Stein, eds.), Plenum Press, New York, pp. 293–311.CrossRefGoogle Scholar
  40. Miles, F. A., and Eighmy, B. B., 1980, Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations, J. Neurophysiol. 43:1406–1425.PubMedGoogle Scholar
  41. Miles, F. A., and Fuller, J. H., 1974, Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey, Brain Res. 80:512–516.PubMedCrossRefGoogle Scholar
  42. Miles, F. A., and Lisberger, S. G., 1981, Plasticity in the vestibuloocular reflex: A new hypothesis, Annu. Rev. Neurosci. 4:273–299.PubMedCrossRefGoogle Scholar
  43. Miles, F. A., Braitman, D. J., and Dow, B. M., 1980, Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys, J. Neurophysiol. 43:1477–1493.PubMedGoogle Scholar
  44. Nagao, S., 1983, Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits, Exp. Brain Res. 53:36–46.PubMedCrossRefGoogle Scholar
  45. Niven, J. I., Hixson, W. C., and Correia, M. J., 1966, Elicitation of horizontal nystagmus by periodic linear acceleration, Acta Otolaryngol. 62:429–441.PubMedCrossRefGoogle Scholar
  46. Paige, G. D., Tomko, D. L., and Gordon, D. B., 1988, Visual-vestibular interactions in the linear vestibulo-ocular reflex (VOR), Invest. Ophthalmol. Vis. Sci. [Suppl.] 29:342.Google Scholar
  47. Robinson, D. A., 1976, Adaptive gain control of vestibuloocular reflex by the cerebellum, J. Neurophysiol. 39:954–969.PubMedGoogle Scholar
  48. Ronne, H., 1923, False movements appearing during vision through spectacle glasses; their significance with respect to experience in wearing spectacles and their connection with the vestibular apparatus, Acta Ophthalmol. 1:55–62.Google Scholar
  49. Rubin, M., 1974, Optics for Clinicians, Triad Scientific Publishers, Gainesville, FL, pp. 247–248.Google Scholar
  50. Schairer, J. O., and Bennett, M. V. L., 1980, Cerebellectomy in goldfish prevents adaptive gain control of the VOR without affecting the optokinetic system, in: The Vestibular System: Functions and Morphology (T. Gualtierotti, ed.), Springer-Verlag, New York, pp. 463–477.Google Scholar
  51. Schultheis, L. W., and Robinson, D. A., 1981, Directional plasticity of the vestibulo-ocular reflex in the cat, Ann. N.Y. Acad. Sci. 374:504–512.PubMedCrossRefGoogle Scholar
  52. Schwartz, U., and Miles, F. A., 1989, Translational vestibuloocular (TVOR) responses of monkey are a linear function of the inverse of the viewing distance, Soc. Neurosci. Abstr. 15(2):783.Google Scholar
  53. Sekine, S., 1983, Age changing effect on the vestibulo-ocular reflex in humans, Pract. Otol. 76:1471.CrossRefGoogle Scholar
  54. Smith, R., 1985, Vergence eye-movement responses to whole-body linear acceleration stimuli in man, Ophthal. Physiol. Opt. 5:303–311.CrossRefGoogle Scholar
  55. Snow, R., Hore, J., and Vilis, T., 1985, Adaptation of saccadic and vestibulo-ocular systems after extraocular muscle tenectomy, Invest. Ophthalmol. Vis. Sci. 26:924–931.PubMedGoogle Scholar
  56. Viirre, E., Tweed, D., Milner, K., and Vilis, T., 1986, A reexamination of the gain of the vestibuloocular reflex, J. Neurophysiol. 56:439–450.PubMedGoogle Scholar
  57. Viirre, E., Cadera, W., and Vilis, T, 1987, The pattern of changes produced in the saccadic system and vestibuloocular reflex by visually patching one eye, J. Neurophysiol. 57:92–103.PubMedGoogle Scholar
  58. Westheimer, G., and McKee, S. P., 1975, Visual acuity in the presence of retinal-image motion, J. Opt. Soc. Am. 65:847–850.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Frederick A. Miles
    • 1
  1. 1.Laboratory of Sensorimotor Research, National Eye InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations