Adaptation to Anamorphosing Lenses: Perceptive Responses and Visuomotor Coordination

  • Valérie Cornilleau-Peres
  • Jacques Droulez
Part of the Perspectives in Vision Research book series (PIVR)


The control of the interactions between the body and its environment requires from the central nervous system a capacity to perceive three-dimensional (3-D) metric parameters such as lengths, angles, and curvatures. However, primary visual information consists in bidimensional (2-D) images formed on the retina and coded retinotopically by the first neural networks in the visual pathways. Motion parallax is one of the depth cues that allow the visual system to perform the inference of 3-D structure from 2-D images. This is demonstrated by the kinetic depth effect (Wallach and O’Connell, 1953) where the shadows of 3-D objects are projected on a screen (Fig. 10–1). As the objects move in the 3-D space, an observer can perceive their structure by looking at the screen. In order to account for this type of perceptual phenomenon, Gibson (1966) developed an approach leading to the scheme presented in Fig. 10–2.


Retinal Image Visual Scene Motion Parallax Lens Wear Visuomotor Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelson, E. H., 1985, Rigid objects that appear highly non-rigid, Invest. Ophthalmol. Vis. Sci. [Suppl.] 26:56.Google Scholar
  2. Ames, A. J., 1951, Visual perception and the rotating trapezoidal window, Psychol. Monogr. 65(7):324.CrossRefGoogle Scholar
  3. De Valois, R. L., William Yund, E. W., and Hepler, N., 1982, The orientation and direction selectivity of cells in macaque visual cortex, Vision Res. 22:531–544.PubMedCrossRefGoogle Scholar
  4. Droulez, J., 1985, Neurosensory processing of moving images, Submitted to Biol. Cybernet, (in press).Google Scholar
  5. Droulez, J., and Cornilleau, V., 1986, Adaptive changes in perceptual responses and visuomanual coordination during exposure to visual metrical distortion, Vision Res. 26(11):1783–1792.PubMedCrossRefGoogle Scholar
  6. Gauthier, G. M., and Robinson, D. A., 1975, Adaptation of the human vestibulo-ocular reflex to magnifying lenses, Brain Res. 92:331–335.PubMedCrossRefGoogle Scholar
  7. Gibson, J. J., 1966, The Senses Considered as Perceptual Systems, Boston: Houghton Mifflin.Google Scholar
  8. Gonshor, A., and Melvill-Jones, G., 1973, Changes of human vestibulo-ocular response by vision reversal during head rotation. J. Physiol. (Lond.) 234:102–103.Google Scholar
  9. Helmholtz, H. von, 1866, Handbuch der Physiologischen Optik, Vos, Leipzig.Google Scholar
  10. Howard, I. P., 1982, Human Visual Orientation, John Wiley & Sons, New York.Google Scholar
  11. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and architecture of monkey striate cortex, J. Physiol. (Lond.) 195:215–243.Google Scholar
  12. Istl-Lenz, Y., Hydén, D., and Schwartz, D. W F., 1985, Response of the human vestibulo-ocular reflex following long term 2x magnified visual input, Exp. Brain Res. 57:448–455.PubMedCrossRefGoogle Scholar
  13. Longuet-Higgins, H. C., and Prazdny, K., 1980, The interpretation of a moving retinal image, Proc. R. Soc. Lond. [Biol.] 208:385–397.CrossRefGoogle Scholar
  14. Mandelbrojt, P., Gauthier, G. M., Vercher, J. L., Ouaknine, M., and Obrecht, G., 1984, Ensemble expérimental pour l’étude des propriétés adaptatives du système visuo-manuel chez le sujet nouvellement équipé de corrections optiques, J. Fr. Ophtalmol. 7:157–165.PubMedGoogle Scholar
  15. Melvill Jones, G., Guitton, D., and Berthoz, A., 1988, Changing patterns of eye-head coordination during 6 h of optically reversed vision, Exp. Brain Res. 69:531–544.PubMedCrossRefGoogle Scholar
  16. Miles, F. A., and Fuller, J. H., 1974, Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey, Brain Res. 80:512–516.PubMedCrossRefGoogle Scholar
  17. Pellionisz, A., and Llinas, R., 1979, Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributive processor for predictive coordination, Neuroscience 4:323–348.PubMedCrossRefGoogle Scholar
  18. Rock, I., 1966, The Nature of Perceptual Adaptation, Basic Books, New York.Google Scholar
  19. Stratton, G., 1897, Upright vision and the retinal image, Psychol. Rev. 4:182–187.CrossRefGoogle Scholar
  20. Ullman, S., 1979, The Interpretation of Visual Motion, Cambridge, MA, MIT Press.Google Scholar
  21. Wallach, H., and O’Connell, D. N., 1953, The kinetic depth effect, J. Exp. Psychol. 45(4):205–217.PubMedCrossRefGoogle Scholar
  22. Waxman, A. M., and Ullman, S., 1985, Surface structure and three dimensional motion from image flow kinematics, Int. J. Robot. Res. 4(3):72–94.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Valérie Cornilleau-Peres
    • 1
    • 2
  • Jacques Droulez
    • 1
    • 2
  1. 1.Laboratory of Physiological OpticsEssilor InternationalCreteilFrance
  2. 2.Laboratory of Neurosensory PhysiologyCNRSParis Cedex 06France

Personalised recommendations