Transient Response in Mesoscopic Devices

  • Leonard F. Register
  • Umberto Ravaioli
  • Karl Hess
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)


Preliminary results of a numerical method for modeling translent through steady-state conditions in mesoscopic devices are presented. Here, the time-evolution of n-dimensional carrier wave functions are simulated, rather than corresponding 2n-dimensional density matrices or Wigner functions, to allow more ready simulation in two and three-dimensional devices structures. The primary features of this numerical method are (1) a tight-binding formulation of the quantum mechanical Hamiltonian, (2) near-ideal open boundary conditions, and (3) Crank-Nichols on evaluation of the resulting spatially discrete time-dependent Schrödinger equation. Example mesoscopic device structures considered are a two-dimensional quantum wire and an idealized T-structure based translstor.


Transient Response Wigner Function Resonant Tunneling Diode Persistent Oscillation Coordinate Science Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    U. Ravaioli, M. A. Osman, W. Pötz, N. Kluksdahl, and D. K. Ferry, Physica B 134, 36 (1985).CrossRefGoogle Scholar
  2. [2]
    William R. Frensley, Phys. Rev. B 36, 1570 (1987).CrossRefGoogle Scholar
  3. [3]
    F. Sols, M. Macucci, U. Ravaioli, and K. Hess, Appl. Phys. Lett. 54, 350 (1989).CrossRefGoogle Scholar
  4. [4]
    S. Datta, M. Melloch, S. Bandyopadhyay, R Noren, M. Vaziri, M. Miller and R. Reifenberger, Phys. Rev. Lett. 55, 2344 (1985).CrossRefGoogle Scholar
  5. [5]
    E. N. Economou, Green’s Functions in Quantum Physics, (Springer-Verlag Berlin, 1983).CrossRefGoogle Scholar
  6. [6]
    R. K. Mains and G. I. Haddad, J. Appl. Phys. 64, 3564 (1988).CrossRefGoogle Scholar
  7. [7]
    R. K. Mains and G. I. Haddad, J. Appl. Phys. 67, 591 (1990).CrossRefGoogle Scholar
  8. [8]
    J. Douglas and J. Gunn, Numer. Math. 6, 428 (1964).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Leonard F. Register
    • 1
  • Umberto Ravaioli
    • 1
  • Karl Hess
    • 1
  1. 1.Beckman Institute and Coordinated Science LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations