Advertisement

A Distribution-Function Approach in the Many-Body Quantum Transport Theory of Quantum-Based Devices

  • F. A. Buot
  • K. L. Jensen
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)

Abstract

A rigorous derivation of an exact equation for the quantum distribution function in many-body quantum transport theory is given. With a subsidiary device boundary condition, a finite “active” open system can be simulated. A fully gauge-invariant exact quantum transport equation for uniform electric fields is also presented.

Keywords

Spectral Weight Quantum Transport Uniform Electric Field Rigorous Derivation Gradient Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Kadanoff & G. Baym, Quantum Statistical Mechanics, (Benjamin, NY, 1962).zbMATHGoogle Scholar
  2. 2.
    L.V. Keldysh, Soviet Physics JETP 20, 1018 (1965).MathSciNetGoogle Scholar
  3. 3.
    J. Schwinger, J. Math. Phys. 2, 407 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A.P. Jauho and J.W. Wilkins, Phys. Rev.B29, 1919 (1984).Google Scholar
  5. 5.
    A.P. Jauho, Phys. Rev.B32, 2248 (1985).Google Scholar
  6. 6.
    F.S. Kahn, J.H. Davies, and J.W. Wilkins, Phys. Rev.B36, 2578 (1987).Google Scholar
  7. 7.
    G.D. Mahan, Physics Report 145, 251 (1987).CrossRefGoogle Scholar
  8. 8.
    P. Danielewicz, Ann. Phys. 152, 239 (1984).CrossRefGoogle Scholar
  9. 9.
    F.A. Buot, Phys. Rev.A33, 2544 (1986).Google Scholar
  10. 10.
    F.A. Buot, Phys. Rev. B14, 3310 (1976);Google Scholar
  11. 10a.
    F.A. Buot, Phys. Rev.B14, 977 (1976).Google Scholar
  12. 11.
    W. Frensley, Phys. Rev.B36, 1570 (1987).Google Scholar
  13. 12.
    K.L. Jensen and F.A. Buot, J. Appl. Phys. 65, 5248 (1989).CrossRefGoogle Scholar
  14. 13.
    K.L. Jensen and F.A. Buot, Appl. Phys. Lett. 55, 669 (1989).CrossRefGoogle Scholar
  15. 14.
    U. Ravaioli, M. Osman, W. Potz, N. Kluksdahl, and D. Ferry, Physica 134B, 36 (1987).Google Scholar
  16. 15.
    K.L. Jensen and F.A. Buot, J. Appl. Phys. 67, 2153 (1990).CrossRefGoogle Scholar
  17. 16.
    K.L. Jensen and F.A. Buot, J. Appl. Phys. (June 15, 1990).Google Scholar
  18. 17.
    J. Lin and L.C. Chiu, J. Appl. Phys. 57, 1373 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • F. A. Buot
    • 1
  • K. L. Jensen
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations