Modeling InAs/GaSb/AlSb interband tunnel structures

  • D. Z.-Y. Ting
  • E. T. Yu
  • D. A. Collins
  • D. H. Chow
  • T. C. McGill
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)

Abstract

We have implemented a simple model that allows realistic yet rapid simulation of conventional as well as interband resonant tunneling devices. Using this model we have studied InAs-GaSb-InAs broken-gap interband transmission devices and found that, despite the absence of classically forbidden barrier regions, a resonant tunneling process is involved in producing the observed negative differential resistance. Furthermore, we have found that maximum peak current densities should be found in devices with GaSb layer thicknesses corresponding to a single, rather than multiple, transmission resonance peak in the broken-gap region.

Keywords

Transmission Coefficient Resonant Tunneling Peak Current Density Doping Profile Valence Band Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).CrossRefGoogle Scholar
  2. [2]
    L. L. Chang, L. Esaki and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).CrossRefGoogle Scholar
  3. [3]
    M. Sweeny and J. Xu, Appl. Phys. Lett. 54, 546 (1989).CrossRefGoogle Scholar
  4. [4]
    J. R. Söderström, D. H. Chow, and T. C. McGill, Appl. Phys. Lett. 55, 1094 (1989).CrossRefGoogle Scholar
  5. [5]
    L. F. Luo, R. Beresford, and W. I. Wang, Appl. Phys. Lett. 55, 2023 (1989).CrossRefGoogle Scholar
  6. [6]
    D. H. Chow, J. R. Söderström, E. T. Yu, and T. C. McGill, (To be published).Google Scholar
  7. [7]
    K. Taira, I. Hase, and K. Kawai, Proceedings of the Seventh International Workshop on Future Electron Devices, Superlattice and Quantum Functional Devices, Oct 2–4, 1989, Toba, Japan, pp 191 – 192.Google Scholar
  8. [8]
    D. Z.-Y. Ting, D. A. Collins, E. T. Yu., D. H. Chow, and T. C. McGill, (To be published).Google Scholar
  9. [9]
    See, for example, J. N. Schulman and Y. C. Chang, Phys. Rev. B., 27, 2346 (1983).CrossRefGoogle Scholar
  10. [10]
    J. R. Söderström, E. T. Yu, M. K. Jackson, Y. Rajakarunanayake, and T. C. McGill, (Accepted for publication in J. Appl. Phys.).Google Scholar
  11. [11]
    See, for example, J. N. Schulman and Y. C. Chang, Phys. Rev. B., 24, 4445 (1981).CrossRefGoogle Scholar
  12. [12]
    C. B. Duke, Solid State Physics, Suppl. 10, Tunneling in Solids (Academic Press, New York, 1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. Z.-Y. Ting
    • 1
  • E. T. Yu
    • 1
  • D. A. Collins
    • 1
  • D. H. Chow
    • 1
  • T. C. McGill
    • 1
  1. 1.Thomas J. Watson, Sr. Laboratory of Applied PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations