Numerical Study of High Field Transport in SiO2 with Traps: A Coupled Monte Carlo and Rate Equation Model

  • R. L. Kamocsai
  • W. Porod
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)


The physical problem addressed in this paper is that of hot electron transport in silicon dioxide with traps. A rate equation model solved self consistently [1,2] has previously been shown to agree well with experimental data for the flat band voltage shift in silicon dioxide. This dynamic trapping and detrapping model contains an empirical detrapping cross section. By using a Monte Carlo algorithm to calculate a microscopic local detrapping cross section, an improved version of the self consistent rate equation model is obtained.


Monte Carlo Algorithm Monte Carlo Model Computational Electronics Polar Optical Phonon Flat Band Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Nissan — Cohen, J. Shappir, D. Frohman — Bentchkowsky, J. Appl. Phys. 58, 2252 (1985).Google Scholar
  2. [2]
    E. Avni and J. Shappir, J. Appl. Phys. 64, 734 (1988).CrossRefGoogle Scholar
  3. [3]
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipies (Cambridge, New York, 1986).Google Scholar
  4. [4]
    C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).CrossRefGoogle Scholar
  5. [5]
    M. V. Fischetti, Phys. Rev. Lett.53, 1755 (1984).CrossRefGoogle Scholar
  6. [6]
    M. V. Fischetti, D. J. DiMaria, S. D. Brorson, T. N. Theis, and J. R. Kirtley, Phys. Rev. B 31, 8124 (1985).CrossRefGoogle Scholar
  7. [7]
    W. Porod and D. K. Ferry, Phys. Rev. Lett. 54, 1189 (1985).CrossRefGoogle Scholar
  8. [8]
    R. L. Kamocsai and W. Porod, Solid-State Electron. 32, 1825 (1989).CrossRefGoogle Scholar
  9. [9]
    E. O. Kane, Phys. Rev. 159, 624 (1967).CrossRefGoogle Scholar
  10. [10]
    D. J. DiMaria and J. W. Stasiak, J. Appl. Phys. 65, 2342 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. L. Kamocsai
    • 1
  • W. Porod
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations