Eigenvalue Solution to Steady-State Boltzmann Equation

  • S. Krishnamurthy
  • M. van Schilfgaarde
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)


We show that a basis of orthogonal Hermite polynomials can be used in the recently developed eigenvalue method [1] for solving the Boltzmann equation. A small number of basis functions is sufficient to well represent the distribution function. Calculated velocity-field characteristics at electric field strengths less than 7 kV/cm agree well with experimentally measured values in GaAs.


Basis Function Boltzmann Equation Electric Field Strength High Electric Field Hermite Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Krishnamurthy, A. Sher, and A. B. Chen, Appl. Phys. Lett. 55, 1003 (1989).CrossRefGoogle Scholar
  2. 2.
    W. Fawcett, D. C. Herbert, J. Phys. C7, 1641 (1974).Google Scholar
  3. 3.
    P. N. Butcher and W. Fawcett, J. Phys. Lett. 21, 489 (1966).CrossRefGoogle Scholar
  4. 4.
    H. D. Rees, J. Phys. Chem. Solids 30, 643 (1969)CrossRefGoogle Scholar
  5. 5.
    W. T. Masselink, N. Braslau, W. I. Wang, and S. L. Wright, Appl. Phys. Lett. 51, 1533 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • S. Krishnamurthy
    • 1
  • M. van Schilfgaarde
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations