Device Simulation Augmented by the Monte Carlo Method

  • M. A. Littlejohn
  • J. L. Pelouard
  • W. C. Koscielniak
  • D. L. Woolard
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)


This paper describes applications which combine Monte Carlo methods with other techniques to model semiconductor devices. These procedures can produce more effective means to describe the behavior of device structures requiring detailed physical descriptions and increased computational efficiency. Applications presented in this paper include: (a) simulation of transport across hetero-barriers with quasi-ballistic effects; (b) simulation of metal-semiconductor-metal photodetectors in which parasitic circuit effects are important; and (c) generation of transport parameters for use in drift-diffusion (and hydrodynamic) models while negating assumptions about the nature of the particle velocity distribution function.


Barrier Height Velocity Distribution Function Boltzmann Transport Equation Contact Finger Discrete Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kurosawa, J. Phys. Soc. Jpn. Suppl., 21, p. 424, 1966.Google Scholar
  2. 2.
    W. Fawcett, A. Boardman, S. Swain, J. Phys. Chem. Solids, 21, p. 1963, 1970.CrossRefGoogle Scholar
  3. 3.
    C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, p. 645, 1983.CrossRefGoogle Scholar
  4. 4.
    M. Fischetti and S. Laux, Phys. Rev. B., 38, p. 9721, 1988.CrossRefGoogle Scholar
  5. 5.
    J. Pelouard and M. Littlejohn, SPIE Proceedings, 1144. p. 582, 1989.CrossRefGoogle Scholar
  6. 6.
    J. Pelouard, et al., NASECODE VI, p. 255, 1989, Boole Press, Dublin.Google Scholar
  7. 7.
    A. Levi and S. Schmitt-Rink, Nanostructure Physics and Fabrication, p. 221, 1989, Academic Press, New York.Google Scholar
  8. 8.
    K. Hess and G. Iafrate, Proc. IEEE, 76, p. 519, 1988.CrossRefGoogle Scholar
  9. 9.
    B. J. VanZeghbroeck, et. al., IEEE Electron. Dev. Lett., 9, p. 527, 1988.CrossRefGoogle Scholar
  10. 10.
    W. Koscielniak, et. al., IEEE Phot. Tech. Lett., 2, p. 125, 1990.CrossRefGoogle Scholar
  11. 11.
    D. Woolard, et. al., Solid-State Elect., 32, p. 1347, 1989.CrossRefGoogle Scholar
  12. 12.
    D. Woolard, et. al., Solid-State Elect., 31, p. 571, 1988.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. A. Littlejohn
    • 1
    • 2
  • J. L. Pelouard
    • 1
  • W. C. Koscielniak
    • 1
  • D. L. Woolard
    • 1
  1. 1.Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleighUSA
  2. 2.U. S. Army Research OfficeResearch Triangle ParkUSA

Personalised recommendations