Stabilization of Uncertain Sampled-Data Systems

  • Karl Heinz Kienitz
Part of the Progress in Systems and Control Theory book series (PSCT, volume 6)


In this contribution the problem of obtaining stabilizing controllers for a class of sampled-data uncertain systems is investigated. Particular attention is given to the choice of a suitable mathematical discrete-time model for the uncertain system. A Lyapunov-based approach is then used to propose stabilizing extended state-feedback controllers and investigate the stability of the controlled system.


Lyapunov Function Uncertain System Lyapunov Function Candidate Quadratic Lyapunov Function Uncertain Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. R. Barmish; M. Corless; G. Leitmann. “A New Class of Stabilizing Controllers for Uncertain Dynamical Systems”, SIAM J. Contr. Optimiz., v. 21, pp. 246–255, 1983.Google Scholar
  2. [2]
    Y. H. Chen. “On the Robustness of Mismatched Uncertain Dynamical Systems”, J. Dyn. Syst., Meas., and Control, v. 109, pp. 29–35, 1987.Google Scholar
  3. [3]
    M. Corless. “Stabilization of Uncertain Discrete-Time Systems”, Proc. IFAC Workshop on Model Error Concepts and Compensation, Boston, USA, 1985.Google Scholar
  4. [4]
    M. Corless; J. Manela. “Control of Uncertain Discrete-Time Systems”, Proc. American Control Conference, v. 1, pp. 515–520, 1986.Google Scholar
  5. [5]
    C. A. Desoer; M. Vidyasagar. Feedback Systems: Input-Output Properties, Academic Press, 1975.Google Scholar
  6. [6]
    C. V. Hollot; M. Arabacioglu. “l-th Step Lyapunov Min-Max Controllers: Stabilizing Discrete-Time Systems Under Real Parameter Variations”, Proc. American Control Conference, v. 1, pp. 496–501, 1987.Google Scholar
  7. [7]
    R. Kalman; J. E. Bertram. “Control System Analysis and Design Via the ‘Second Method’ of Lyapunov–part II: Discrete-Time Systems”, J. Basic Eng., v. 82, pp. 394–400, 1960.CrossRefGoogle Scholar
  8. [8]
    K. H. Kienitz; M. Mansour. “Output Feedback Stabilization of Uncertain Linear Systems”, Proc. 28th Conference on Decision and Control, pp. 1682–1687, 1989.Google Scholar
  9. [9]
    M. E. Magaíïa; S. H. Zak. “Robust State Feedback Stabilization of Discrete-Time Uncertain Dynamical Systems”, Proc. 26th Conference on Decision and Control, v. 2, pp. 1530–1534, 1987.Google Scholar
  10. [10]
    J. Manela. Deterministic Control of Uncertain Linear Discrete and Sampled-Data Systems, Ph.D. Dissertation, U.C. Berkeley, 1985.Google Scholar
  11. [11]
    G. S. Rogers. Matrix Derivatives, Lecture Notes in Statistics, vol. 2, Marcel Dekker, New York, 1980.Google Scholar
  12. [12]
    M. Vidyasagar. Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1978.Google Scholar
  13. [13]
    R. Fletcher. Practical Optimization Methods, 2nd. Edition, John Wiley & Sons, New York, 1987.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Karl Heinz Kienitz
    • 1
  1. 1.Institut für Automatik und Industrielle ElektronikEidgenössische Technische Hochschule Zürich ETH-Zentrum / ETLZürichSwitzerland

Personalised recommendations