Adaptive Tracking for Scalar Minimum Phase Systems

  • U. Helmke
  • D. Prätzel-Wolters
  • S. Schmid
Part of the Progress in Systems and Control Theory book series (PSCT, volume 6)


We present the concept of a universal adaptive tracking controller for classes of linear systems. For the class of scalar minimum phase systems of relative degree one, adaptive tracking is shown for reference signals, that are bounded solutions of linear differential equations. The controller requires no identification of the system parameters. Robustness properties are explored.


Reference Signal Adaptive Controller Minimum Phase Model Reference Adaptive Control Adaptive Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Bar-Kana, Adaptive Control — A Simplified Approach, in C. Leon-des (ed.) Control and Dynamic Systems, Vol. 25, pp. 187 – 226, 1987Google Scholar
  2. [2]
    I. Bar-Kana and H. Kaufmann, Global Stability and Performance of a Simplified Adaptive Algorithm, Int. J. Control, 42, pp. 1491 – 1505, 1985CrossRefGoogle Scholar
  3. [3]
    M. Corless, First order adaptive controllers for systems which are stabilizable via high gain output feedback, in Analysis and Control of Nonlinear Systems (ed. by Byrnes, Martin, Salks ), pp. 13 – 16, North-Holland, 1988Google Scholar
  4. [4]
    U. Helmke and D. Prätzel-Wolters, Stability and robustness properties of universal adaptive controllers for first order linear systems, Int. J. Control, Vol. 48 (3), pp. 1153 – 1182, 1988CrossRefGoogle Scholar
  5. [5]
    U. Helmke, D. Prätzel-Wolters and S. Schmid, Sufficient Conditions for Adaptive Stabilization and Tracking, Bericht der Arbeitsgruppe Technomathematik Nr. 38, Universität Kaiserslautern, 1989Google Scholar
  6. [6]
    I.D. Landau, Adaptive Control — The Model Reference Approach, New York, Marcel Dekker, 1979Google Scholar
  7. [7]
    B. Märtensson, Adaptive stabilization, Doctoral Thesis, Lund Institute of Technology, 1986Google Scholar
  8. [8]
    B. Mârtensson, Adaptive Stabilization without High-Gain. In C.I. Byrnes and A. Kurzansky, eds. Identification and Adaptive Control, pages 226 - 238, Berlin 1988, Lecture Notes in Control and Information Sciences, Springer VerlagGoogle Scholar
  9. [9]
    D.E. Miller and E.J. Davison, A New Self-Tuning Controller to Solve the Servomechanism Problem, Proc. IEEE 26th Conf. on Decision and Control, 843 – 849, 1987Google Scholar
  10. [10]
    A.S. Morse, An adaptive controller for globally stabilizing linear systems with unknown high-frequency gains, in Lecture Notes in Control and Information Science No. 62, Berlin, Springer Verlag, 1984Google Scholar
  11. [11]
    A.S. Morse, Towards a unified theory of parameter adaptive control, Report No. 8807, EE, Yale University, 1988Google Scholar
  12. [12]
    R.D. Nussbaum, Some remarks on a conjecture in parameter adaptive control, Systems and Control Letters 3 (1983), 243 – 246CrossRefGoogle Scholar
  13. [13]
    D.H. Owens, D. Prätzel-Wolters and A. Ilchmann, Positive real structure and high gain adaptive stabilization, IMA J. Math. Contr. Inf., 4, 1987Google Scholar
  14. [14]
    H. Unbehauen and I. Vakilzadeh, Synchronization of n non-identical simple-integral plants, Int. J. Control, Vol. 50, No. 2, 543 – 574, 1989CrossRefGoogle Scholar
  15. [15]
    J.C. Willems and C.I. Byrnes, Global adaptive stabilization in the absence of information on the high frequency gain, in: Lecture Notes in Control and Information Science, No. 62 Berlin, Springer Verlag, 1984Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • U. Helmke
    • 1
  • D. Prätzel-Wolters
    • 2
  • S. Schmid
    • 2
  1. 1.Naturwissenschaftliche Fakultät I — MathematikUniversität RegensburgGermany
  2. 2.Fachbereich MathematikUniversität KaiserslauternGermany

Personalised recommendations