Contributions to Nonlinear Inverse Problems Arising in Parameter Estimation for Elliptic Systems

  • K. Kunisch
Part of the Progress in Systems and Control Theory book series (PSCT, volume 2)

Abstract

In this paper various aspects of the problem of determining the diffusion coefficient in elliptic equations from knowledge of the state are considered. These include identifiability and stability of the coefficient with respect to the problem data, Tikhonov regularization and numerical techniques for practical determination of the coefficient from given data.

Keywords

Inverse Problem Elliptic System Tikhonov Regularization Second Order Condition Augmented Lagrangian Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ac]
    R.C. Acar: Identification of the coefficient in elliptic equations, preprint.Google Scholar
  2. [Aℓ]
    W. Alt: Lipschitzian perturbations of infinite dimensional problems, in “Mathematical Programming with Data Perturbations II,” (A.V. Fiacco, ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 85, Marcel Dekker, Inc. New York, 1983, 7–21.Google Scholar
  3. [BK]
    H.T. Banks and K. Kunisch: Estimation Techniques for Distributed Parameter Systems, Birkhäuser Boston, to appear 1989.CrossRefGoogle Scholar
  4. [BaK]
    J. Baumeister and K. Kunisch: Identifiability and stability of diffusion and restoring force in elliptic systems, submitted.Google Scholar
  5. [CG]
    C. Chicone and J. Gerlach: A note on the identifiability of distributed parameters in elliptic equations, SIAM J. Math. Anal. 18 (1987), 1378–1384.CrossRefGoogle Scholar
  6. [CK1]
    F. Colonius and K. Kunisch: Output least squares stability in elliptic systems, Applied Mathematics and Optimization 19(1988), 33–63.Google Scholar
  7. [CK2]
    F. Colonius and K. Kunisch: Stability of perturbed optimization problems with application to parameter estimation, submitted.Google Scholar
  8. [EKN]
    H.W. Engl, K. Kunisch and A. Neubauer: Tikhonov regularization for the solution of nonlinear illposed problems I, to appear in Inverse Problems.Google Scholar
  9. [F]
    B.G. Fitzpatrick: Statistical methods in parameter identification and model selection, Ph.D. Thesis, Division of Applied Mathematics, Brown University, Providence, Rhode Island 1988.Google Scholar
  10. [FV]
    A. Friedman and M. Vogelius: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a continuous dependence result, Arch. Rat. Mech. Anal., to appear.Google Scholar
  11. [G]
    G. Geymayer: Regularisierungsverfahren und deren Anwendung auf inverse Randwertprobleme, Master Thesis, Technical University of Graz, Austria, 1988.Google Scholar
  12. [IK]
    K. Ito and K. Kunisch: The augmented Lagrangian method for parameter estimation in elliptic systems, to appear in SIAM J. on Control and Optimization.Google Scholar
  13. [IKK]
    K. Ito, M. Kroller and K. Kunisch: A numerical study of the augmented Lagrangian method for the estimation of parameters in elliptic systems, submitted to SIAM J. on Sci. and Stat. Computing.Google Scholar
  14. [K1]
    K. Kunisch: Inherent identifiability of parameters in elliptic differential equations, J. Math.Anal. Appl. 132(1988), 453–472.CrossRefGoogle Scholar
  15. [K2]
    K. Kunisch: A survey of recent results on the output least squares formulation of parameter estimation problems, Automatica 24(1988), 531–593.CrossRefGoogle Scholar
  16. [KK]
    M. Kroller and K. Kunisch: A numerical study of an augmented Lagrangian method for the estimation of parameters in elliptic systems: Noisy data, outliers and discontinuous coefficients, Technical Report 123 (1988), Technical University of Graz, Austria.Google Scholar
  17. [KL]
    R.V. Kohn and B.D. Lowe: A variational method for parameter estimation, RAIRO Math. Mod. and Num. Anal. 22(1988), 119–158.Google Scholar
  18. [KP]
    K. Kunisch and G. Peichl: Estimation of a temporally and spatially varying diffusion coefficient in a parabolic system by an augmented Lagrangian technique, submitted.Google Scholar
  19. [KV]
    R. Kohn and M. Vogelius: Determining conductivity by boundary measurements II, Interior Results, Comm. Pure Appl. Math. 38(1985), 643–667.CrossRefGoogle Scholar
  20. [M]
    H. Moritz: Advanced Physical Geodesy, Wichman, Karlsruhe, 1980.Google Scholar
  21. [N]
    A. Neubauer: Tikhonov regularization for the solution of nonlinear ill-posed problems, II, to appear in Inverse Problems.Google Scholar
  22. [R]
    G.R. Richter: An inverse problem for the steady-state diffusion equation, SIAM J. Appl. Math. 41(1981), 210–221.CrossRefGoogle Scholar
  23. [Y]
    W.W.-G. Yeh: Review of parameter identification procedures in ground water hydrology: The inverse problem, Water Res. Rev. 22(1986), 95–108.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • K. Kunisch

There are no affiliations available

Personalised recommendations