Advertisement

New Progress in Arithmetic Geometry

  • Kenneth Ireland
  • Michael Rosen
Part of the Graduate Texts in Mathematics book series (GTM, volume 84)

Abstract

The decade of the eighties saw dramatic progress in the field of arithmetic geometry. Problems that were previously thought to be inaccessible by contemporary methods were in fact resolved. It is the purpose of this chapter to survey a portion of these dramatic developments.

Keywords

Modular Form Elliptic Curve Elliptic Curf Number Field Class Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ap.
    T. Apostol. Modular FunctionS and Uirichle’t Series in Nummber The’ory’. New York: Springer-Verlag, 1976.CrossRefGoogle Scholar
  2. B.
    S. Bloch. The proof of the Mordell conjecture. Math. Intelligencer, 6(2), (1984), 41–47.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bue.
    D.A. Buell. Small class numbers and extreme values of L-functions. Math. Comp., 31 (1977). 786–796.MathSciNetzbMATHGoogle Scholar
  4. Bu-Fr-Hof.
    D. Bump, S. Friedberg, and J. Hoffstein. A non-vanishing theorem for derivatives of automorphic L-functions with applications to elliptic curves. Bull. Am. Math. Soc., 21(1), (1989), 89–93.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bu-Gr-Zag.
    J. Buhler, B. Gross, and D. Zagier. On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3. Math. Comp., 44(170), (1985), 471–481.MathSciNetGoogle Scholar
  6. Co.
    J. Coates. The Work of Gross—Zagier on Heegner Points and the Derivatives of L-series, Sem. Bourbaki, No. 635, 1984–85. In Astérisque, Vol. 133–34, 1986.Google Scholar
  7. Co-Sil.
    G. Cornell and J. Silverman. Arithmetic Geometry. New York: SpringerVerlag, 1986.zbMATHCrossRefGoogle Scholar
  8. Fa.
    G. Faltings. Diophantine approximation on abelian varieties, to appear.Google Scholar
  9. Fa-Wu.
    G. Faltings, G. Wüstholtz, et al. Rational Points, Vieweg, Aspects of Mathematics, Vol. E6, 1984.Google Scholar
  10. Go1.
    D. Goldfeld. Gauss’s class number problem for imaginary quadratic fields. Bull. Am. Math. Soc.,13(1), (1985), 23–37.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Go2.
    D. Goldfeld. The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer. Ann. Scuola Norm. Sup., Pisa 3(4), (1976), 623– 663.MathSciNetzbMATHGoogle Scholar
  12. Go3.
    D. Goldfeld. The conjectures of Birch and Swinnerton-Dyer and the class number of quadratic fields. Arith. de Caen, Astérisque, 41–42 (1977), 219–227.MathSciNetGoogle Scholar
  13. Gr-Za.
    B. Gross and D. Zagier. Heegner points and derivatives of L-series. Invent. Math., 84 (1986), 225–320.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Hu.
    D. Husemöller. Elliptic Curves. New York: Springer-Verlag, 1987. Graduate Texts in Mathematics, Vol. l l l.Google Scholar
  15. Ko.
    N. Koblitz, Introduction to Elliptic Curves and Modular Forms. New York: Springer-Verlag, 1984. Graduate Texts in Mathematics, Vol. 97.zbMATHCrossRefGoogle Scholar
  16. Kol.
    V.A. Kolyvagin. Finiteness of E(O) and 111(E,O) for a class of Weil curves. Math. Nauk. SSSR Ser. Mat., 52 (1988), 522–540 (Russian): Math. of the USSR Izvestiya, 32 (1989), 523–542 (English).Google Scholar
  17. La1.
    S. Lang. Hyperbolic and Diophantine analysis. Bull. Am. Math. Soc., 14(2), (1986), 159–205.zbMATHCrossRefGoogle Scholar
  18. La2.
    S. Lang. Elliptic Functions. Reading, Mass.: Addison-Wesley, 1973.zbMATHGoogle Scholar
  19. La3.
    S. Lang. Elliptic Curves: Diophantine Analysis. New York: SpringerVerlag, 1978.zbMATHGoogle Scholar
  20. La4.
    S. Lang. Fundamentals of Diophantine Geometry. New York: SpringerVerlag, 1983.zbMATHGoogle Scholar
  21. La5.
    S. Lang. Introduction to Modular Forms. New York: Springer-Verlag, 1976.zbMATHGoogle Scholar
  22. La6.
    S. Lang. Conjectured Diophantine estimates on elliptic curves. Progress in Mathematics, Vol. 35. Cambridge, Mass.: Birkhäuser, 1983.Google Scholar
  23. Maz.
    B. Mazur. Arithmetic on curves. Bull. Am. Math. Soc. 14(2), (1986), 207– 259.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Mo-We.
    H.L. Montgomery and P.J. Weinberger. Notes on small class numbers. Acta Arith., 24 (1973), 529–542.MathSciNetGoogle Scholar
  25. Mur-Mur.
    M.R. Murty and V.K. Murty. Mean values of derivatives of modular L-series. To appear in Ann. of Math. Google Scholar
  26. Oes1.
    J. Oesterlé. Nouvelles Approches du “Théorème” de Fermat, Sem. Bourbaki, No. 694, 1987. In Astérisque, Vol. 161–62, 1988.Google Scholar
  27. Oes2.
    J. Oesterlé. Nombres de classes de corps quadratiques imaginaire, Sem. Bourbaki, No. 631, 1983–84. In Astérisque, Vol. 121–22, 1985.Google Scholar
  28. Ogg.
    A. Ogg. Modular Forms and Dirichlet Series. Menlo Park, Calif.: W. A. Benjamin, 1969.zbMATHGoogle Scholar
  29. Ro.
    M. Rosen. New results on the arithmetic of elliptic curves. Les Gazette des Science.s Math. du Quebec, forthcoming.Google Scholar
  30. Rul.
    K. Rubin. Tate—Shaferevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math., 89 (1987), 527–560.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Ru2.
    K. Rubin. The work of Kolyvagin on the arithmetic of elliptic curves. In: The Arithmetic of Complex Manifolds. Lecture Notes in Mathematics, Vol. 1399. New York: Springer-Verlag, 1989.Google Scholar
  32. Se.
    J.-P. Serre. A Course in Arithmetic. New York: Springer-Verlag, 1973.zbMATHCrossRefGoogle Scholar
  33. Shaf.
    I.R. Shaferevich. Basic Algebraic Geometry. New York: Springer-Verlag, 1977.Google Scholar
  34. Shim.
    G. Shimura. Arithmetic Theory of Automorphic Forms. Tokyo: Iwanami Shoten and Princeton, N.J.: Princeton University Press, 1971.Google Scholar
  35. Si1.
    J. Silverman. The Arithmetic of Elliptic Curves. New York: Springer-Verlag, 1986. Graduate Texts in Mathematics, Vol. 106.zbMATHCrossRefGoogle Scholar
  36. Sil2.
    J. Silverman. Lower bounds for the canonical height on elliptic curves. Duke Math. J., 48 (1981), 633–648.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Sil3.
    J. Silverman. A quantitative version of Siegel’s theorem. J. Reine und Angew. Math., 378 (1987), 60–100.Google Scholar
  38. Ta.
    J. Tate. The arithmetic of elliptic curves. Invent. Math., 23 (1974), 179–206.MathSciNetzbMATHCrossRefGoogle Scholar
  39. We.
    A. Weil. Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann., 168 (1967), 149–156.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Zag.
    D. Zagier. L-Series of elliptic curves, the Birch-Swinnerton—Dyer conjecture, and the class number problem of Gauss. Notices Am. Math. Soc., 31(7), (1984), 739–743.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kenneth Ireland
  • Michael Rosen
    • 1
  1. 1.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations