Blood Flow in the Central and Peripheral Nervous Systems

  • Kishena C. Wadhwani
  • Stanley I. Rapoport
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 107)


Blood flow in the central and peripheral nervous systems is regulated by local tissue metabolism, carbon dioxide, circulating vasogenic agents, and probably nerves that innervate blood vessels. An extensive literature exists concerning this regulation. One method for measuring local blood flow, laser-Doppler flowmetry (LDF), has become particularly useful in recent years. In this chapter, we briefly review the structure and function of the vasculature in the nervous system, and then examine major techniques used to study blood flow, particularly LDF.


Cerebral Blood Flow Sciatic Nerve Circle ofWillis Nerve Blood Flow Normal Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ranson, S. W. 1953. Meninges and blood vessels of the central nervous system. In The Anatomy of the Nervous System, Ranson, S. W., Clark, S.L., eds Philadelphia: W.B. Saunders, pp 67–81.Google Scholar
  2. 2.
    Day, A. L. 1987. Arterial distributions and variants. In Cerebral Blood Flow. Physiologic and Clinical Aspects, Wood, J.H. (ed). New York: McGraw-Hill, pp 19–36.Google Scholar
  3. 3.
    Capra, N. F., and J.P. Kapp. 1987. Anatomic and physiologic aspects of venous system. In Cerebral Blood Flow. Physiologic and Clinical Aspects, Wood, J.H., (ed) New York: McGraw-Hill, pp 37–58.Google Scholar
  4. 4.
    Reese, T. S., and M.J. Karnovsky. 1967. Fine structural localization of a blood—brain barrier to exogenous peroxidase. J Cell Biol 34:207–217.PubMedCrossRefGoogle Scholar
  5. 5.
    Rapoport, S.I. 1976. Blood—brain barrier in physiology and medicine. New York: Raven Press.Google Scholar
  6. 6.
    Bradbury, M. 1979. The concept of a blood—brain barrier. Chilchester: John Wiley & Sons.Google Scholar
  7. 7.
    Crone, C., and D.G. Levitt. 1984. Capillary permeability to small solutes. In Handbook of Physiology, sect. 2: The cardiovascular system, vol IV, part 1. Bethesda, MD: American Physiological Society, pp 411–466.Google Scholar
  8. 8.
    Mchedlishvili, G.I. 1986. Arterial behavior and blood circulation in the brain. New York: Plenum Press.Google Scholar
  9. 9.
    Miller, J.D., and B.A. Bell. 1987. Cerebral blood flow variations with perfusion pressure and metabolism. In Cerebral Blood Flow. Physiologic and Clinical Aspects, Wood, J.H., ed. New York: McGraw-Hill, pp 119–130.Google Scholar
  10. 10.
    McCulloch, J. 1988. The physiology and regulation of cerebral blood flow: In Handbook of Regional Cerebral Blood Flow, Knezevic, S., Maximilian, V.A., Mubrin, Z., Prohovnik, I., Wade, J., eds. Hillsdale, NJ: Lawrence Erlbaum Associates, pp 1–24.Google Scholar
  11. 11.
    Scheinberg, P., and H.W. Jayne. 1952. Factors influencing cerebral blood flow and metabolism. A review. Circulation 5:225–236.PubMedCrossRefGoogle Scholar
  12. 12.
    Sokoloff, L. 1960. Metabolism of the central nervous system in vivo. In Handbook of Physiology, sect. 1, vol. III, pp 1843–1864.Google Scholar
  13. 13.
    Sokoloff, L. 1981. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1:7–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Mchedlishvili, G.I., V.A. Akhobadze, and L.G. Ormotsadze. 1963. Compensation of cerebral circulation during temporary occlusion of the cranial superior vena cava. Fed Proc 22:T197–T201.Google Scholar
  15. 15.
    Auer, L.M., Kuschinsky, W., Johansson, B.B., and L. Edvinsson. 1982. Sympathoadrenergic influence on pial veins and arteries in the cat. In Cerebral Blood Flow: Effects of Nerves and Neurotransmitters, Heistad, D. D., Marcus, M. L., eds. Amsterdam: Elsevier, North-Holland, pp 291–300.Google Scholar
  16. 16.
    Owman, C., and J.E. Hardebo. 1986. Multiple transmitter amines and peptides in cerebrovascular nerves: possible links in migraine pathophysiology. Cephalalgia Suppl 4:49–62.Google Scholar
  17. 17.
    Owman, C. 1986. Neurogenic control of the vascular system: focus on cerebral circulation. In Handbook of Physiology, sect. 1, vol IV. Bethesda, MD: American Physiological Society, pp 525–580.Google Scholar
  18. 18.
    Edvinsson, L., E.T. MacKenzie, J. McCulloch, and R. Uddman. 1987. Perivascular innervation and receptor mechanisms in cerebrovascular bed. In Cerebral Blood Flow: Physiologic and Clinical Aspects, Wood, J. H., ed. New York: McGraw-Hill, pp 145–172.Google Scholar
  19. 19.
    MacKensie, E.T., and B. Scatton. 1987. Cerebral circulatory and metabolic effects of perivascular neurotransmitters. CRC Crit Rev Clin Neurobiol 2:357–419.Google Scholar
  20. 20.
    Greep, R.O. 1954. Histology. New York: Blakiston.Google Scholar
  21. 21.
    Thomas, P.K., and Y. Olsson. 1984. Microscopic anatomy and function of the connective tissue components of peripheral nerve. In Peripheral Neuropathy, 2nd edition, Dyck, P.J., Thomas, P.K., Lambert, E.H., Bunge, R., eds. Philadelphia: W.B. Saunders, vol I, pp 97–120.Google Scholar
  22. 22.
    Olsson, Y. 1984. Vascular permeability in the peripheral nervous system. In Peripheral Neuropathy, 2nd edition, Dyck, P.J., Thomas, P.K., Lambert, E.H., and Bunge, R., eds. Philadelphia: W.B. Saunders, vol I. pp 579–597.Google Scholar
  23. 23.
    Lundborg, G. 1970. Ischemic nerve injury. Scand J Plast Reconstr Surg Suppl 6:1–113.Google Scholar
  24. 24.
    Lundborg, G. 1988. Intraneural microcirculation. Orthop Clin North Am 19:1–12.PubMedGoogle Scholar
  25. 25.
    Shantha, T. R., and G.H. Bourne. 1968. The perineural epithelium-a new concept. In: The Structure and Function of Nervous Tissue, Bourne, G. H., ed. New York: Academic Press, vol 1, pp 379–459.Google Scholar
  26. 26.
    Lundborg, G., and P.I. Branemark. 1968. Microvascular structure and function of peripheral nerves. Adv Microcirc 1:66–88.Google Scholar
  27. 27.
    Bell, M. A., and A. G. M. Weddell. 1984. A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain 107:871–898.PubMedCrossRefGoogle Scholar
  28. 28.
    Olsson, Y., and T.S. Reese. 1971. Permeability of vase nervorum and perineurium in mouse sciatic nerve studied by fluorescence and electron microscopy. J Neuropath Exp Neurol 30:105–119.PubMedCrossRefGoogle Scholar
  29. 29.
    Greene, D.A., A.I. Winegrad, J.L. Carpentier, M.J. Brown, M. Fukuma, and L. Orci. 1979. Rabbit sciatic nerve fascicle and “endoneurial” preparation for in vitro studies of peripheral nerve glucose metabolism. J Neurochem 33:1007–1018.PubMedCrossRefGoogle Scholar
  30. 30.
    Smith, D.R., A.I. Kobrine, and H.V. Rizzoli. 1977. Absence of autoregulation in peripheral nerve blood flow. J Neurol Sci 33:347–352.PubMedCrossRefGoogle Scholar
  31. 31.
    Low, P. A., and R. R. Tuck. 1984. Effects of changes of blood pressure, respiratory acidosis and hypoxia on blood flow in the sciatic nerve of the rat. J Physiol 347:513–524.PubMedGoogle Scholar
  32. 32.
    Sundqvist, T., P.Å. Öberg, and S.I. Rapoport. 1985. Blood flow in rat sciatic nerve during hypotension. Exp Neurol 90:139–148.PubMedCrossRefGoogle Scholar
  33. 33.
    Sugimoto, H., and W.W. Monafo. 1987. Regional blood flow in sciatic nerve, biceps femoris muscle, and truncal skin in response to hemorrhagic hypotension. J Trauma 27: 1025–1030.PubMedCrossRefGoogle Scholar
  34. 34.
    Tschetter, T. H., A. C. Klassen, J. A. Resch, and M. W. Meyer. 1970. Blood flow in the central and peripheral nervous system of dogs using a particle distribution method. Stroke 1:370–374.PubMedCrossRefGoogle Scholar
  35. 35.
    Rechthand, E., S. Sato, P.Å. Öberg, and S.I. Rapoport. 1988. Sciatic nerve blood flow response to carbon dioxide. Brain Res 446:61–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Hromada, J. 1963. On the nerve supply of the connective tissue of some peripheral nervous system components. Acta Anat 55:343–351.PubMedCrossRefGoogle Scholar
  37. 37.
    Amenta, F., M. C. Mione, and P. Napoleone. 1983. The autonomic innervation of the vasa nervorum. J Neural Transm 58:291–297.PubMedCrossRefGoogle Scholar
  38. 38.
    Appenzeller, O., K.K. Dhital, T. Cowen, and G. Burnstock. 1984. The nerves to blood vessels supplying blood to nerves: the innervation of vasa nervorum. Brain Res 304:383–386.PubMedCrossRefGoogle Scholar
  39. 39.
    Rechthand, E., A. Hervonen, S. Sato, and S.I. Rapoport. 1986. Distribution of adrenergic innervation of blood vessels in peripheral nerve. Brain Res 374:185–189.PubMedCrossRefGoogle Scholar
  40. 40.
    Hara, H., and S. Kobayashi. 1987. Adrenergic innervation of the vasa nervorum in the cranial nerves and spinal roots in the subarachnoid space. Exp Neurol 98:673–676.PubMedCrossRefGoogle Scholar
  41. 41.
    Dhital, K. K., and O. Appenzeller. 1988. Innervation of vasa nervorum. In Nonadrenergic Innervation of Blood Vessels, Burnstock, G., Griffith, S. eds. Boca Raton, FL: CRC Press, vol II, pp 191–211.Google Scholar
  42. 42.
    Nilsson, G. E., T. Tenland, and P. A. Öberg. 1980. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604.PubMedCrossRefGoogle Scholar
  43. 43.
    Bonner, R., and R. Nossal. 1981. Model for laser Doppler measurements of blood flow in tissue. Appl Optics 20:2097–2107.CrossRefGoogle Scholar
  44. 44.
    Rosenblum, B. R., R.F. Bonner, and E. H. Oldfield. 1987. Intraoperative measurement of cortical blood flow adjacent to cerebral AVM using laser Doppler velocimetry. J Neurosurg 66:396–399.PubMedCrossRefGoogle Scholar
  45. 45.
    Thorne, P. R., A. L. Nuttall, F. Scheibe, and J.M. Miller. 1987. Sound-induced artifact in cochlear blood flow measurements using the laser Doppler flowmeter. Hearing Res 31:229–234.CrossRefGoogle Scholar
  46. 46.
    Oberg, P. A., T. Tenland, and G.E. Nilsson. 1984. Laser-Doppler flowmetry-a noninvasive and continuous method for blood flow evaluation in microvascular studies. Acta Med Scand Suppl 687:17–24.PubMedGoogle Scholar
  47. 47.
    Williams, P. C., M.D. Stern, P. D. Bowen, R. A. Brooks, M.K. Hammock, R.L. Bowman, and G. Di Chiro. 1980. Mapping of cerebral cortical strokes in rhesus monkeys by laser Doppler spectroscopy. Med Res Eng 13:3–5.PubMedGoogle Scholar
  48. 48.
    Gygax, P., and N. Wiernsperger. 1982. Hypotension induced changes in cerebral microflow and EEG and their pharmacological alterations. Acta Med Scand Suppl 678:29–36.Google Scholar
  49. 49.
    Koyama, T., M. Horimoto, H. Mishina, and T. Asakura. 1982. Measurements of blood flow velocity by means of a laser Doppler microscope. Optik 61:411–426.Google Scholar
  50. 50.
    Chen, S. T., C.Y. Hsu, E. L. Hogan, H. Maricq, and J. D. Balentine. 1986. A model of focal ischemic stroke in the rat: Reproducible extensive cortical infarction. Stroke 17:738–743.PubMedCrossRefGoogle Scholar
  51. 51.
    Hsu, C. Y., S. T. Chen, Y.O. Luk, T.H. Liu, N.L. Banik, R. H. Gadsden Sr., and E. L. Hogan. 1987. Pathophysiology of focal cerebral ischemia: Studies in a rat model. In Cerebral Vascular Disease 6. World Federation of Neurology 13th Salzburg Conference, Meyer, J. S., Lechner, H., Reivich, M., Ott, E.O., eds. Amsterdam: Elsevier Science Publishers, pp 265–270.Google Scholar
  52. 52.
    Mizoi, K., J. Suzuki, H. Abiko, K. Ogasawara, M. Oba, and T. Yoshimoto. 1987. Experimental study on the reversibility of cerebral ischemia. Residual blood flow and duration of ischemia. Acta Neurochir (Wien) 88:126–134.CrossRefGoogle Scholar
  53. 53.
    May, A. M., and S.P. Arneric. 1987. Effects of basal forebrain lesions and cholinomimetics on cerebral cortical microvascular perfusion (CCMP) in rat: Continuous measurement by laser-Doppler flowmetry. Soc Neurosci Abstr 13:1034.Google Scholar
  54. 54.
    Eyre, J.A., T.J.H. Essex, P.A. Flecknell, P.H. Bartholomew, and J.I. Sinclair. 1988. A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labelled microspheres. Clin Phys Physiol Meas 9:65–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Ellis, E. F., M. L. Heizer, X. Zhang, A. Marmarou, and R. Haberl. 1988. Laser Doppler flowmetry for the assessment of the cerebral microcirculation. FASEB J 2:A507.Google Scholar
  56. 56.
    Skarphedinsson, J.O., H. Harding, and P. Thoren. 1988. Repeated measurements of cerebral blood flow in rats. Comparisons between the hydrogen clearance method and laser Doppler flowmetry. Acta Physiol Scand 134:133–142.PubMedCrossRefGoogle Scholar
  57. 57.
    Haberl, R., M. L. Heizer, A. Marmarou, and E. F. Ellis. 1989. Laser Doppler assessment of the brain microcirculation: Effect of systemic alterations. Am J Physiol 256:H1248–H1254.Google Scholar
  58. 58.
    Haberl, R. L., M. L. Heizer, and E. F. Ellis. 1989. Laser Doppler assessment of the brain microcirculation: Effect of local alterations. Am J Physiol 256:H1255–H1260.PubMedGoogle Scholar
  59. 59.
    Coyle, P. 1988. Compromised early development of collateral blood flow to cerebrum in chronic hypertension. FASEB J 2:A507.Google Scholar
  60. 60.
    Rundquist, I., Q.R. Smith, M. E. Michel, P. Ask, P. Å. Öberg, and S. I. Rapoport. 1985. Sciatic nerve blood flow measured by laser Doppler flowmetry and [14C]iodoantipyrine. Am J Physiol 248:H311–H317.PubMedGoogle Scholar
  61. 61.
    Takeuchi, M., and P.A. Low. 1987. Dynamic peripheral nerve metabolic and vascular responses to exsanguination. Am J Physiol 253:E349–E353.PubMedGoogle Scholar
  62. 62.
    Myers, R. R., H.M. Heckman, and H.C. Powell. 1988. Reduced nerve blood flow and subperineurial demyelination following epineurial vessels stripping: Relationship to compression injuries. Peripheral Neuropath Assoc Am Abstr Halifax, Nova Scotia, July 19–23, p71.Google Scholar
  63. 63.
    Zochodne, D. W., and P. A. Low. 1988. Pharmacologic manipulation of nerve blood floW. — Soc Neurosci Abstr 14:996.Google Scholar
  64. 64.
    Green, H. D., C. E. Rapela, and M. C. Conrad. 1963. Resistance (conductance) and capacitance phenomena in terminal vascular beds. In: Handbook of Physiology, sect. 2: Circulation, Hamilton, W.F., Dow, P., eds. Bethesda, MD: American Physiological Society, vol 2, pp 935–960.Google Scholar
  65. 65.
    Kety, S. S., and C. F. Schmidt. 1945. The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–66.Google Scholar
  66. 66.
    Ingvar, D. H., and N. A. Lassen. 1961. Quantitative determination of regional cerebral blood-flow in man. Lancet 2:806–807.CrossRefGoogle Scholar
  67. 67.
    Selander, D., L.G. Mansson, L. Karlsson, and J. Svanvik. 1985. Adrenergic vasoconstriction in peripheral nerves of the rabbit. Anesthesiology 62:6–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Gotoh, F., J.S. Meyer, and M. Tomita. 1966. Hydrogen method for determining cerebral blood flow in man. Arch Neurol 15:549–559.PubMedCrossRefGoogle Scholar
  69. 69.
    Fieschi, C., L. Bozzao, A. Agnoli, M. Nardini, and A. Bartolini. 1969. The hydrogen method of measuring local blood flow in subcortical structures of the brain: Including a comparative study with the 14C antipyrine method. Exp Brain Res 7:111–119.PubMedCrossRefGoogle Scholar
  70. 70.
    Muller-Schauenburg, W., and E. Betz. 1969. Gas and heat clearance comparison and use of heat transport for quantitative local blood flow measurements. In Cerebral Blood Flow. Clinical and Experimental Results, Brock, M., Fieschi, C., Ingvar, D.H., Lassen, N.A., Schurmann, K., eds. Berlin: Springer-Verlag, pp 47–49.CrossRefGoogle Scholar
  71. 71.
    Herscovitch, P., and W.J. Powers. 1987. Measurement of regional cerebral blood flow by position emission tomography. In Cerebral Blood Flow, Wood, J.H., ed. New York: McGraw-Hill, pp 257–271.Google Scholar
  72. 72.
    Landau, W.M., W.H. Freygang Jr., L.P. Roland, L. Sokoloff, and S.S. Kety. 1955. The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc 80:125–129.Google Scholar
  73. 73.
    Reivich, M., J. Jehle, L. Sokoloff, and S.S. Kety. 1969. Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J Appl Physiol 27:296–300.PubMedGoogle Scholar
  74. 74.
    Mandel, M.J., F. Arcidiacono, and L.A. Sapirstein. 1963. Iodoantipyrine and Rb86 Cl uptake by brain, cord, and sciatic nerve in the rat. Am J Physiol 204:327–329.Google Scholar
  75. 75.
    Tschetter, T. H., A. C. Klassen, J. A. Resch, and M. W. Meyer. 1969. Regional cerebral blood flow in dogs using a particle distribution method. Proc Soc Exp Biol Med 131:1244–1249.PubMedGoogle Scholar
  76. 76.
    Cross, K. W., P. R. F. Dear, M. K. S. Hathorn, A. Hyams, D.M. Kerslake, M. W. A. Milligan, P.M. Rahilly, and J.K. Stothers. 1979. An estimation of intracranial blood flow in the new-born infant. I Phvsiol 289:329–345.Google Scholar
  77. 77.
    Muller H. R., E.W. Radue, A. Saia, C. Pallotti, and M. Buser. 1985. Carotid blood flow measurement by means of ultrasonic techniques: Limitations and clinical use. In: Cerebral Blood Flow and Metabolism Measurement. Hartmann, A., Hoyer, S., eds. Berlin: Springer-Verlag, pp 571–592.CrossRefGoogle Scholar
  78. 78.
    Fan, F. C., R. Y. Z. Chen, G. B. Schuessler, and S. Chien. 1979. Comparison between the 133Xe clearance method and the microsphere technique in cerebral blood flow determinations in the dog. Circ Res 44:653–659.PubMedCrossRefGoogle Scholar
  79. 79.
    Mayhan, W. G., F.M. Faraci, and D.D. Heistad. 1986. Disruption of the blood-brain barrier in cerebrum and brain stem during acute hypertension. Am J Physiol 251:H1171–H1175.PubMedGoogle Scholar
  80. 80.
    Tuma, R. F., G.L. Irion, U.S. Vasthare, and L.A. Heinel. 1985. Aged-related changes in regional blood flow in the rat. Am J Physiol 249:H485–H491.PubMedGoogle Scholar
  81. 81.
    Brown, M. M., and H. Pickles. 1982. Effect of epoprostenol (Prostacyclin, PGI2) on cerebral blood flow in man. J Neurol Neurosurg Psychiatry 45:1033–1036.PubMedCrossRefGoogle Scholar
  82. 82.
    Eklof, B., N.A. Lassen, L. Nilsson, K. Norberg, and B.K. Siesjo. 1973. Blood flow and metabolic rate for oxygen in the cerebral cortex of the rat. Acta Physiol Scand 88:587–589.PubMedCrossRefGoogle Scholar
  83. 83.
    Lassen, N.A., and K. Hoedt-Rasmussen. 1966. Human cerebral blood flow measured by two inert gas techniques. Comparison of the Kety-Schmidt method and the intra-arterial injection method. Circ Res 19:681–688.PubMedCrossRefGoogle Scholar
  84. 84.
    Haining, J. L., M.D. Turner, and R.M. Pantall, 1968. Measurement of local cerebral blood flow in the unanesthetized rat using a hydrogen clearance method. Circ Res 23:313–324.PubMedCrossRefGoogle Scholar
  85. 85.
    Ohno, K., K.D. Pettigrew, and S.I. Rapoport. 1979. Local cerebral blood flow in the conscious rat as measured with 14C-antipyrine, 14C-iodoantipyrine and 3H-nicotine. Stroke 10:62–67.PubMedCrossRefGoogle Scholar
  86. 86.
    Eklof, B., N. A. Lassen, L. Nilsson, K. Norberg, B. K. Siesjo, and P. Torlof. 1974. Regional cerebral blood flow in the rat measured by the tissue sampling technique; a critical evaluation using four indicators C14-antipyrine, C14-ethanol, H3-water and Xenon133. Acta Physiol Scand 91:1–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Sugimoto, H., W.W. Monafo, and S. G. Eliasson. 1986. Regional sciatic nerve and muscle blood flow in conscious and anesthetized rats. Am J Physiol 251:H1211–1216.PubMedGoogle Scholar
  88. 88.
    Hitchon, P. W., J.M. Lobosky, T. Yamada, G. Johnson, and R. A. Girton. 1987. Effect of hemorrhagic shock upon spinal cord blood flow and evoked potentials. Neurosurgery 21:849–857.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kishena C. Wadhwani
  • Stanley I. Rapoport

There are no affiliations available

Personalised recommendations