History of Laser-Doppler Blood Flowmetry

  • A. P. Shepherd
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 107)


The best-known applications of the Doppler principle in biology and medicine are a series of different techniques for assessing blood flow from the Doppler shift that sound waves experience when they travel through the blood flowing in a relatively large blood vessel. One of the chief advantages that Doppler ultrasound techniques such as pulse-echo scanners offer, besides their noninvasiveness, is their ability to produce images of the heart and major blood vessels. However, it is impractical to use Doppler ultrasound methods to measure blood flow in what is arguably the most important part of the cardiovascular system: the microcirculation—in other words, within the tissues nourished by invisibly small blood vessels. Therefore, ultrasound methods are incapable of measuring blood flow at the edge of a healing gastric ulcer, in the torso skin of a burn patient, in the nasal mucosa of an allergy sufferer, or in a skin flap after plastic surgery.


Tissue Perfusion Speckle Pattern Doppler Shift Frequency Tissue Blood Flow Healing Gastric Ulcer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woodruff, A.E. 1971. Johann Christian Doppler. In Dictionary of Scientific Biography, Gillispie, C. C., ed. New York: Charles Scribner’s Sons, vol 4, pp 167–168.Google Scholar
  2. 2.
    Magnin, P.A. 1986. Doppler effect: history and theory. Hewlett-Packard J 37:26–31.Google Scholar
  3. 3.
    White, D.N. 1982. Johann Christian Doppler and his effect-a brief history. Ultrasound Med Biol 8:583–591.PubMedCrossRefGoogle Scholar
  4. 4.
    Kales, D. 1988. Laser inventors Townes and Schawlow-remembrances of things past. Laser Focus (Aug.):75–76.Google Scholar
  5. 5.
    Schawlow, A. L., and C.H. Townes. 1958. Infrared and optical masers. Phys Rev 112:1940–1949.CrossRefGoogle Scholar
  6. 6.
    Van Pelt, W. F., H. F. Stewart, R.W. Peterson, A. M. Roberts and J.K. Worst. 1970. Laser Fundamentals and Experiments. Rockville, MD: U.S. Department of Health, Education, and Welfare.Google Scholar
  7. 7.
    Cummins, H. Z., and H.L. Swinney. 1970. Light beating spectroscopy. In Progress in Optics, Wolf, E., ed. New York: American Elsevier Publish Co., vol. 8, pp 135–197.Google Scholar
  8. 8.
    Forrester, A. T., R. A. Gudmunds, and P.O. Johnson. 1955. Photoelectric mixing of incoherent light. Phys Rev 99:1691–1700.CrossRefGoogle Scholar
  9. 9.
    Yeh, Y., and H.Z. Cummins. 1964. Localized fluid flow measurements with an He-Ne laser spectrometer. Appl Phys Lett 4:176–178.CrossRefGoogle Scholar
  10. 10.
    Riva, C.E., B. Ross, and G.B. Benedek. 1972. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol 11:936–944.PubMedGoogle Scholar
  11. 11.
    Tanaka, T., C. Riva, and I. Ben-Sira. 1974. Blood velocity measurements in human retinal vessels. Science 186:830–831.PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka, T., and G.B. Benedek. 1975. Measurement of velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy. Appl Optics 14:189–200.Google Scholar
  13. 13.
    Mishina, H., T. Koyama, and T. Asakura. 1974. Velocity measurements of blood flow in the capillary and vein using the laser Doppler microscope. Appl Optics 14:2326–2327.CrossRefGoogle Scholar
  14. 14.
    Einav S.H., J. Berman, R.L. Fuhro, P.R. DiGiovanni, J.D. Fridman, and S. Fine. 1975. Measurement of blood flow in vivo by laser Doppler anemometry through a microscope. Biorheology 12:203–205.PubMedGoogle Scholar
  15. 15.
    Born, G. V. R., A. Melling, and J.H. Whitelaw. 1978. Laser Doppler microscope for blood velocity measurements. Biorheology 15:163–172.PubMedGoogle Scholar
  16. 16.
    Le-Cong, P. 1976. Development of a laser Doppler velocimeter and its applications to microcirculation studies. Dissertation, University of California, San Diego, University Microfilm Order No. 77–522.Google Scholar
  17. 17.
    Le-Cong, P., and B.W. Zweifach. 1979. In vivo and in vitro velocity measurements in microvasculature with a laser. Microvasc Res 17:131–141.PubMedCrossRefGoogle Scholar
  18. 18.
    Le-Cong, P., and R.H. Loveberg. 1980. Analysis of dual beam laser velocimeter applied to microcirculation studies. Rev Sci Instr 51:565–574.CrossRefGoogle Scholar
  19. 19.
    Stern, M.D. 1975. In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Stern, M.D., and D.L. Lappe (inventors). 1978. Method and apparatus for measurement of blood flow using coherent light. U.S. Patent 4,109,647.Google Scholar
  21. 21.
    Stern, M. D., D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R.L. Bowman. 1977. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol 232:H441-H448.PubMedGoogle Scholar
  22. 22.
    Stern, M.D., P. D. Bowen, R. Parma, R.W. Osgood, R.L. Bowman, and J. H. Stein. 1979. Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat. Am J Physiol 236:F80-F87.PubMedGoogle Scholar
  23. 23.
    Holloway, G. A., and D.W. Watkins. 1977. Laser Doppler measurement of cutaneous blood flow. J Invest Dermatol 69:306–309.PubMedCrossRefGoogle Scholar
  24. 24.
    Watkins, D. W., and G. A. Holloway. 1978. An instrument to measure cutaneous blood flow using the Doppler shift of laser light. IEEE Trans Biomed Eng BME-25:28–33.CrossRefGoogle Scholar
  25. 25.
    Nilsson, G. E., T. Tenland, and P. Å. Öberg. 1980. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604.PubMedCrossRefGoogle Scholar
  26. 26.
    Nilsson, G. E., P. Å. Öberg, and T. Tenland (inventors). 1981. Method and apparatus for measuring flow motions in a fluid. Swedish Patent 7811288–5.Google Scholar
  27. 27.
    Nilsson, G. E., T. Tenland, and P. Å. Öberg. 1980. A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng 27:12–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Shepherd, A. P., G.L. Riedel, J.W. Kiel, D.J. Haumschild, and L. C. Maxwell. 1987. Evaluation of an infrared laser-Doppler blood flowmeter. Am J Physiol 252:G832–839.PubMedGoogle Scholar
  29. 29.
    Bonner, R., and R. Nossal. 1981. Model for laser Doppler measurements of blood flow in tissue. Appl Optics 20:2097–2107.CrossRefGoogle Scholar
  30. 30.
    Bonner, R. F., T.R. Clem, P. D. Bowen, and R.L. Bowman. 1981. Laser-Doppler continuous real-time monitor of pulsatile and mean blood flow in tissue microcirculation. In Scattering Techniques Applied to Supra-Molecular and Nonequilibrium Systems, Chen, S.H., Chu, B., Nossal, R., eds. New York: Plenum, pp 685–702.CrossRefGoogle Scholar
  31. 31.
    Hunt, B. F., S. C. Leavitt, and D. C. Hempstead. 1986. Digital processing chain for a Doppler ultrasound subsystem. Hewlett-Packard 37:45–48.Google Scholar
  32. 32.
    Javan, A., W.R. Bennett, and D. R. Herriott. 1961. Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys Rev Lett 6:106.CrossRefGoogle Scholar
  33. 33.
    Öberg, P. Å., G.E. Nilsson, T. Tenland, A. Holmström, and D.H. Lewis. 1979. Use of a new laser Doppler flowmeter for measurement of capillary blood flow in skeletal muscle after bullet wounding. Acta Chir Scand Suppl 489:145–150.PubMedGoogle Scholar
  34. 34.
    Williams, P. C., M.D. Stern, P. D. Bowen, R. A. Brooks, M.K. Hammock, R.L. Bowman, and G. di Chiro. 1980. Mapping of cerebral cortical strokes in Rhesus monkeys by laser Doppler spectroscopy. Med Res Eng 13(2):3–5.PubMedGoogle Scholar
  35. 35.
    Shepherd, A. P., and G.L. Riedel. 1982. Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry. Am J Physiol 242:G668–G672.PubMedGoogle Scholar
  36. 36.
    Hellem, S., L.S. Jacobsson, G.E. Nilsson, and D.H. Lewis. 1983. Measurement of microvascular blood flow in cancellous bone using laser Doppler flowmetry and 133Xe-clearance. Int J Oral Surg 12:165–177.PubMedCrossRefGoogle Scholar
  37. 37.
    Shepherd, A.P., G.L. Riedel, and W.F. Ward. 1983. Laser-Doppler measurements of blood flow within the intestinal wall and on the surface of the liver. In Microcirculation of the Alimentary Tract, Koo, A., Lam, S.K., Smaje, L.H., eds. Singapore: World Scientific Publishing Co., pp 115–129.Google Scholar
  38. 38.
    de Mul, F. F. M., J. van Spijker, D. van der Plas, J. Greve, J.G. Aarnoudse, and T. M. Smits. 1984. Mini-laser-Doppler blood flow monitor with diode laser source and detection integrated in the probe. Appl Optics 23:2970–2973.CrossRefGoogle Scholar
  39. 39.
    Kiel, J. W., G.L. Riedel, G.R. DiResta, and A.P. Shepherd. 1985. Gastric mucosal blood flow measured by laser—Doppler velocimetry. Am J Physiol 249:G539–G545.PubMedGoogle Scholar
  40. 40.
    Adrian, R.J., and J.A. Borgos (inventors). 1986. Laser Doppler Flow Monitor. U.S. Patent 4, 596, 254.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. P. Shepherd

There are no affiliations available

Personalised recommendations