Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy

  • J. H. Clownia
  • J. Misewich
  • P. P. Sorokin


Through the work of photochemists extending over many decades, there now exists a wealth of information on the various reactions that photoexcited gas phase molecules undergo. Most of this information relates to the product molecules that are formed, either as the direct result of a primary photochemical act, such as photodissociation, or through subsequent secondary reactions, involving collisions with other molecules in the gas. Recently, there has been an extensive effort directed at determining the exact energy distributions of the primary products formed in photodissociation. With the use of nanosecond tunable-laser techniques, such as laser-induced fluorescence (LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have successfully determined the nascent electronic, vibrational, and rotational energy distributions of various diatomic fragments such as CN, OH, NO, and O2 that are directly formed in the photodissociation of many kinds of molecules. The ready availability of high-quality, tunable, nanosecond lasers has made determination of the above-mentioned collisionless energy distributions a relatively straightforward process. The determination of product translational energies has long effectively been handled by angularly resolved time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spectroscopy, including a recently improved version of the latter, velocity-aligned Doppler spectroscopy (Xu et al., 1986).


Pump Pulse Stimulate Raman Scattering Probe Pulse Gain Module Seed Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhmanov, S.A., K.N. Drabovich, A.P. Sukhorukov, and A.K. Shchednova (1972) Combined effects of molecular relaxation and medium dispersion in stimulated Raman scattering of ultrashort light pulses. Soy. Phys. JETP 35, 279–286.Google Scholar
  2. Alfano, R.R. and S.L. Shapiro (1970a) Emission in the region 4000 to 7000 A via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587.CrossRefGoogle Scholar
  3. Alfano, R.R. and S.L. Shapiro (1970b) Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594.CrossRefGoogle Scholar
  4. Avouris, Ph., D.S. Bethune, J.R. Lankard, J.A. Ors, and P.P. Sorokin (1981) Time-resolved infrared spectral photography: study of laser-initiated explosions in HN3. J. Chem. Phys. 74, 2304–2312.CrossRefGoogle Scholar
  5. Bethune, D.S., J.R. Lankard, P.P. Sorokin, R.M. Plecenik, and Ph. Avouris (1981) Time-resolved infrared study of bimolecular reactions between tert-butyl radicals. J. Chem. Phys. 75, 2231–2236.CrossRefGoogle Scholar
  6. Bethune, D.S., A.J. Schell-Sorokin, J.R. Lankard, M.M.T. Loy, and P.P. Sorokin (1983) Time-resolved study of photo-induced reactions of chlorine dioxide. In B.A. Garetz and J.R. Lombardi (eds.), Advances in Laser Spectroscopy, vol. 2, pp. 1–43. Wiley, New York.Google Scholar
  7. Bucksbaum, P.A., J. Bokor, R.H. Storz, and J.C. White (1982) Amplification of ultra-short pulses in krypton fluoride at 248 nm. Opt. Lett. 7, 399–401.CrossRefGoogle Scholar
  8. Burnham, R. and N. Djeu (1978) Efficient Raman conversion of XeCI-laser radiation in metal vapors. Opt. Lett. 3, 215–217.CrossRefGoogle Scholar
  9. Carman, R.L., F. Shimizu, C.S. Wang, and N. Bloembergen (1970) Theory of Stokes pulse shapes in transient stimulated Raman scattering. Phys. Rev. A 2, 60–72.CrossRefGoogle Scholar
  10. Carrick, P.G. and P.C. Engelking (1984) The electronic emission spectrum of methylnitrene. J. Chem. Phys. 81, 1661–1665.CrossRefGoogle Scholar
  11. Corkum, P.B. and R.S. Taylor (1982) Picosecond amplification and kinetic studies of XeCI. IEEE J. Quantum Electron. QE, 18, 1962–1975.CrossRefGoogle Scholar
  12. Corkum, P.B., C. Rolland, and T. Srinivasan-Rao (1986a) Supercontinuum generation in gases: a high order nonlinear optics phenomenon. In G.R. Fleming and A.E. Siegman (eds.), Ultrafast Phenomena V, pp. 149–152. Springer-Verlag, New York.Google Scholar
  13. Corkum, P.B., C. Rolland, and T. Srinivasan-Rao (1986b) Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271.CrossRefGoogle Scholar
  14. Cotter, D. and W. Zapka (1978) Efficient Raman conversion of XeC1 excimer laser radiation in Ba vapour. Opt. Commun. 26, 251–255.CrossRefGoogle Scholar
  15. Dantus, M., M.J. Rosker, and A.H. Zewail (1987) Real-time femtosecond probing of “transition states” in chemical reactions. J. Chem. Phys. 87, 2395–2397.CrossRefGoogle Scholar
  16. Davidovits, P. and J.A. Bellisio (1969) Ultraviolet absorption cross sections for the thallium halide and silver halide vapors. J. Chem. Phys. 50, 3560–3567.CrossRefGoogle Scholar
  17. Demuynck, J., D.J. Fox, Y. Yamaguchi, and H.F. Schaefer III (1980) Triplet methyl nitrene: an indefinitely stable species in the absence of collisions. J. Am. Chem. Soc. 102, 6204–6207.CrossRefGoogle Scholar
  18. Egger, H., T.S. Luk, K. Boyer, D.F. Muller, H Pummer, T. Srinivasan, and C.K. Rhodes (1982) Picosecond, tunable ArF* excimer laser source. Appl. Phys. Lett. 41, 1032–1034.CrossRefGoogle Scholar
  19. Fluegel, B., N. Peyghambarian, G. Olbright, M. Lindberg, S.W. Koch, M. Joffre, D. Hulin, A. Migus, and A. Antonetti (1987) Femtosecond studies of coherent transients in semiconductors. Phys. Rev. Lett. 59, 2588–2591.CrossRefGoogle Scholar
  20. Fork, R.L., B.I. Greene, and C.V. Shank (1981) Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38, 671–672.CrossRefGoogle Scholar
  21. Fork, R.L., C.V. Shank, R.T. Yen, and C. Hirlimann (1982) Femtosecond continuum generation. In K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, and A. Laubereau (eds.), Picosecond Phenomena III, pp. 10–13. Springer-Verlag, New York.CrossRefGoogle Scholar
  22. Fork, R.L., C.V. Shank, C. Hirlimann, R. Yen, and W.J. Tomlinson (1983) Femtosecond white-light continuum pulses. Opt. Lett. 8, 1–3.CrossRefGoogle Scholar
  23. Franken, Th., D. Perner, and M.W. Bosnali (1970) UV-absorptionsspektren von methyl-und äthylnitren mittels pulsradiolyse in der gasphase. Z. Naturforsch. A 25, 151–152.Google Scholar
  24. Glownia, J.H., G. Arjavalingam, and P.P. Sorokin (1985) The potential of DABCO for two-photon amplification. J. Chem. Phys. 82, 4086–4101.CrossRefGoogle Scholar
  25. Glownia, J.H., J. Misewich, and P.P. Sorokin (1986a) Ultrafast ultraviolet pump-probe apparatus. J. Opt. Soc. Am. B 3, 1573–1579.CrossRefGoogle Scholar
  26. Glownia, J.H., G. Arjavalingam, P.P. Sorokin, and J.E. Rothenberg (1986b) Amplification of 350-fsec pulses in XeC1 excimer gain modules. Opt. Lett. 11, 79–81.CrossRefGoogle Scholar
  27. Glownia, J.H., J. Misewich, and P.P. Sorokin (1986c) New excitation and probe continuum sources for subpicosecond absorption spectroscopy. In G.R. Fleming and A.E. Siegman (eds.), Ultrafast Phenomena V, pp. 153–156. Springer-Verlag, New York.Google Scholar
  28. Glownia, J.H., J. Misewich, and P.P. Sorokin (1986d) Amplification in a XeCI excimer gain module of 200-fsec UV pulses derived from a colliding pulse mode locked (CPM) laser system. Proc. Soc. Photo-Opt. Instrum. Eng. 710, 92–98.Google Scholar
  29. Glownia, J.H., J. Misewich, and P.P. Sorokin (1987a) Subpicosecond time-resolved infrared spectral photography. Opt. Lett. 12, 19–21.CrossRefGoogle Scholar
  30. Glownia, J.H., J. Misewich, and P.P. Sorokin (1987b) 160-fsec XeCI excimer amplification system. J. Opt. Soc. Am. B 4, 1061–1065.Google Scholar
  31. Glownia, J.H., J. Misewich, and P.P. Sorokin (1987c) Subpicosecond IR transient absorption spectroscopy: measurement of internal conversion rates in DABCO vapor. Chem. Phys. Lett. 139, 491–495.CrossRefGoogle Scholar
  32. Halpern, A.M., J.L. Roebber, and K. Weiss (1968) Electronic structure of cage amines: absorption spectra of triethylenediamine and quinuclidine. J. Chem. Phys. 49, 1348–1357.CrossRefGoogle Scholar
  33. Hamada, Y., A.Y. Hirikawa, and M. Tsuboi (1973) The structure of the triethylenediamine molecule in an excited electronic state. J. Mol. Spectrosc. 47, 440–456.CrossRefGoogle Scholar
  34. Hartmann, H.-J. and A. Laubereau (1984) Transient infrared spectroscopy on the picosecond time-scale by coherent pulse propagation. J. Chem. Phys. 80, 4663–4670.CrossRefGoogle Scholar
  35. Li, Q.X., T. Jimbo, P.P. Ho, and R.R. Alfano (1986) Temporal distribution of picosecond super-continuum generated in a liquid measured by a streak camera. Appl. Opt. 25, 1869–1871.CrossRefGoogle Scholar
  36. Mack, M.E., R.L. Carman, J. Reintjes, and N. Bloembergen (1970) Transient stimulated rotational and vibrational Raman scattering in gases. Appl. Phys. Lett. 16, 209–211.CrossRefGoogle Scholar
  37. Margenau, H. (1939) Van der Waals forces. Rev. Mod. Phys. 11, 1–35.zbMATHCrossRefGoogle Scholar
  38. Michielson, S., A.J. Merer, S.A. Rice, F.A. Novak, K.F. Freed, and Y. Hamada (1981) A study of the rotational state dependence of predissociation of a polyatomic molecule: the case of C102. J. Chem. Phys. 74, 3089–3101.CrossRefGoogle Scholar
  39. Misewich, J., J.H. Glownia, and P.P. Sorokin (1988a) Measurement with subpicosecond resolution of the frequency sweep of an ultrashort supercontinuum. In Conference on Lasers and Electro-Optics Technical Digest Series 1988, vol. 7, pp. 420–421. Optical Society of America, Washington, D.C.Google Scholar
  40. Misewich, J., J.H. Glownia, J.E. Rothenberg, and P.P. Sorokin (1988b) Subpicosecond UV kinetic spectroscopy; Photolysis of thallium halide vapors. Chem. Phys. Lett. 150, 374–379.CrossRefGoogle Scholar
  41. Nakatsuka, H., D. Grischkowsky, and A.C. Balant (1981) Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910–913.CrossRefGoogle Scholar
  42. Nikolaus, B. and D. Grischkowsky (1983) 90-fsec tunable optical pulses obtained by two-stage pulse compression. Appl. Phys. Lett. 43, 228–230.Google Scholar
  43. Parker, D.H. and Ph. Avouris (1978) Multiphoton ionization spectra of two caged amines. Chem. Phys. Lett. 53, 515–520.CrossRefGoogle Scholar
  44. Parker, D.H. and Ph. Avouris (1979) Multiphoton ionization and two-photon fluorescence excitation spectroscopy of triethylenediamine. J. Chem. Phys. 71, 1241–1246.CrossRefGoogle Scholar
  45. Schwarzenbach, A.P., T.S. Luk, I.A. McIntyre, V. Johann, A. McPherson, K. Boyer, and C.K. Rhodes (1986) Subpicosecond KrF* excimer-laser source. Opt. Lett. 11, 499–501.CrossRefGoogle Scholar
  46. Smith, M.A., J.W. Hager, and S.C. Wallace (1984) Two-color laser photoionization spectroscopy in a collisionless free jet expansion: spectroscopy and excited-state dynamics of diazabicyclooctane. J. Phys. Chem. 88, 2250–2255.CrossRefGoogle Scholar
  47. Szatmári, S. and F.P. Schäfer (1983) Simple generation of high-power, picosecond, tunable excimer laser pulses. Opt. Commun. 48, 279–283.CrossRefGoogle Scholar
  48. Szatmári, S. and F.P. Schäfer (1984a) Generation of intense, tunable ultrashort pulses in the ultraviolet using a single excimer pump laser. In D.H. Auston and K.B. Eisenthal (eds.), Ultrafast Phenomena IV, pp. 56–59. Springer-Verlag, New York.CrossRefGoogle Scholar
  49. Szatmári, S. and F.P. Schäfer (1984b) Excimer-laser-pumped psec-dye laser. Appl. Phys. B 33, 95–98.CrossRefGoogle Scholar
  50. Szatmári, S., B. Racz, and F.P. Schäfer (1987a) Bandwidth limited amplification of 220 fs pulses in XeCI. Opt. Commun. 62, 271–276.CrossRefGoogle Scholar
  51. Szatmári, S., F.P. Schäfer, E. Müller-Horsche, and W. Mückenheim (1987b) Hybrid dye-excimer laser system for the generation of 80 fs, 900 GW pulses at 248 nm. Opt. Commun. 63, 305–309.CrossRefGoogle Scholar
  52. Valdmanis, J.A., R.L. Fork, and J.P. Gordon (1985) Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt. Lett. 10, 131–133.CrossRefGoogle Scholar
  53. van Veen, N.J.A., M.S. deVries, T. Baller, and A.E. deVries (1981) Photofragmentation of thallium halides. Chem. Phys. 55, 371–384.CrossRefGoogle Scholar
  54. Xu, Z., B. Koplitz, S. Buelow, D. Bauch, and C. Wittig (1986) High-resolution kinetic energy distributions via Doppler shift measurements. Chem. Phys. Lett. 127, 534–540.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. H. Clownia
  • J. Misewich
  • P. P. Sorokin

There are no affiliations available

Personalised recommendations