Advertisement

Simple Models of Self-Phase and Induced-Phase Modulation

  • Jamal T. Manassah

Abstract

Supercontinuum (Alfano and Shapiro, 1970) generation is the production of nearly continuous spectra by propagating intense picosecond and subpicosecond laser pulses through nonlinear media. Induced supercontinuum (Manassah et al., 1985; Alfano et al., 1986) is the superbroadening of the spectrum of a weak pulse due to the presence of a strong pulse propagating simultaneously with it in a nonlinear medium. These observable physical effects form the motivation for the study of self-phase and induced-phase modulation. This chapter examines, for some idealized simple models of the nonlinear material and incoming pulse, the amplitude, phase, geometric shape, and spectral distribution of an outgoing pulse on exiting from the nonlinear material for cases of both absent and present pump. The chapter is limited in scope and extent; it is confined to some analytical and semianalytical cases developed by the author and co-workers. Effects related to group velocity dispersion (GVD) are not generally included among our models.

Keywords

Spectral Distribution Probe Pulse Group Velocity Dispersion Longitudinal Phase Incoming Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfano R.R. (1972) GTE Report, TR-72–230–1, April 1972.Google Scholar
  2. Alfano, R.R. and P.P. Ho (1986) Induced phase modulation and induced spectral broadening of propagation laser pulses in condensed matter. Proc. International Conference on Lasers ‘86.Google Scholar
  3. Alfano, R.R. and P.P. Ho (1988) IEEE J. Quantum Electron. 24, 351.Google Scholar
  4. Alfano, R.R. and S.L. Shapiro (1970) Phys. Rev. Lett. 24, 592Google Scholar
  5. Alfano, R.R. Q.X. Li, T. Jimbo, J.T. Manassah, and P.P. Ho (1986) Opt. Lett. 11, 626.Google Scholar
  6. Alfano, R.R., Q.Z. Wang, T. Jimbo, P.P. Ho, R.N. Bhargava, and B.J. Fitzpatrick (1987) Phys. Rev. A 35, 459.Google Scholar
  7. Anderson, D. and M. Lisak (1983) Phys. Rev. A 27, 1393.Google Scholar
  8. Baldeck, P.L., F. Raccah, and R.R. Alfano (1987) Opt. Lett. 12, 588.Google Scholar
  9. Bethe, H.A. and E.E. Salpeter (1957) Quantum Mechanics of One-and Two-Electron Atoms. Academic Press, New York.zbMATHGoogle Scholar
  10. Bloch, F. (1946) Phys. Rev. 70, 460.CrossRefGoogle Scholar
  11. Bloembergen, N. (1965) Nonlinear Optics. Benjamin, New York.Google Scholar
  12. Born, M. and E. Wolf (1975) Principles of Optics, 5th ed. Pergamon, New York. Dabby, F.W. and J.R. Whinnery (1968) Appl. Phys. Lett. 13, 284.Google Scholar
  13. De Martini, F., C.H. Townes, T.K. Gustafson, and P.L. Kelley (1967) Phys. Rev. 164, 312.CrossRefGoogle Scholar
  14. Feynman, R.P., F.L. Vernon, Jr., and R.W. Hellwarth (1957) J. Appl. Phys. 28, 49.Google Scholar
  15. Fork, R.L., C.H. Brito-Cruz, P.C. Becker, and C.V. Shank (1987) Opt. Lett. 12, 483.Google Scholar
  16. Friedberg, R. and S. Hartmann (1971) Phys. Lett. A 37, 285.Google Scholar
  17. Gaskill, J.D. (1978) Linear Systems, Fourier Transforms and Optics. Wiley, New York.Google Scholar
  18. Goodman, J.W. (1968) Introduction to Fourier Optics. McGraw-Hill, New York. Gordon, J.P. (1986) Opt. Lett. 11, 662.Google Scholar
  19. Gordon, J.P., R.C.C. Leite, R.S. Moore, S.P.S. Porto, and J R Whinnery (1965) J. Appl. Phys. 36, 3.CrossRefGoogle Scholar
  20. Grischkowsky, D. and A. Balant (1986) Appl. Phys. Lett. 41, 1.Google Scholar
  21. Kelley, P.L. (1965) Phys. Rev. Lett. 15, 1085. Google Scholar
  22. Kogelnik, H. (1965) Appl. Opt. 4, 1562.CrossRefGoogle Scholar
  23. Kogelnik, H. and T. Li (1966) Proc. IEEE 54, 1312.Google Scholar
  24. Lamb, W.E. Jr. and R.C. Retherford (1950) Phys. Rev. 79, 549.CrossRefGoogle Scholar
  25. McCall, S.L. and E.L. Hahn (1969) Phys. Rev. 183, 457.Google Scholar
  26. Manassah, J.T. (1986a) Appl. Opt. 25, 1737.Google Scholar
  27. Manassah, J.T. (1986b) Phys. Lett. 117A, 5.CrossRefGoogle Scholar
  28. Manassah, J.T. (1987a) Appl. Opt. 26, 1972.Google Scholar
  29. Manassah, J.T. (1987b) Appl. Opt. 26, 3747.Google Scholar
  30. Manassah, J.T. (1988a) Opt. Lett. 13, 755.Google Scholar
  31. Manassah, J.T. (1988b) Appl. Opt. 28, 206.Google Scholar
  32. Manassah, J.T. (1988c) Opt. Lett. April (1989).Google Scholar
  33. Manassah, J.T. (1988d) Appl. Opt. 27, 4635.Google Scholar
  34. Manassah, J.T. and O. Cockings (1987a) Appl. Opt. 26, 3749.Google Scholar
  35. Manassah, J.T. and O. Cockings (1987b) Opt. Lett. 12, 1005.CrossRefGoogle Scholar
  36. Manassah, J.T. and M.A. Mustafa (1988a) Phys. Lett. A133, 51.CrossRefGoogle Scholar
  37. Manassah, J.T. and M.A. Mustafa (1988b) Opt. Lett. 13, 752.CrossRefGoogle Scholar
  38. Manassah, J.T. and M.A. Mustafa (1988c) Appl. Opt. 27, 807.CrossRefGoogle Scholar
  39. Manassah, J.T. and M.A. Mustafa (1988d) The supercontinuum generated by six-photon mixing. Opt. Lett. 13, 862.Google Scholar
  40. Manassah, J.T., M.A. Mustafa, R.R. Alfano, and P.P. Ho (1985) Phys. Lett. 113A, 242. Manassah, J.T., M.A. Mustafa, R.R. Alfano, and P.P. Ho (1986) IEEE J. Quantum Electron. QE-22, 197.Google Scholar
  41. Manassah, J.T., P.L. Baldeck, and R.R. Alfano (1988a) Opt. Lett. 13, 589. Manassah, J.T., P.L. Baldeck, and R.R. Alfano (1988b) Opt. Lett. 13, 1090. Manassah, J.T., P.L. Baldeck, and R.R. Alfano (1988c) Appl. Opt. 27, 3586. Marburger, J.H. (1975) Prog. Quantum Electron. 4, 35.Google Scholar
  42. Martinez, O.A., J.P. Gordon, and R.L. Fork (1984) J. Opt. Soc. Am. A-1, 1003. Nayfeh, A.H. (1981) Introduction to Perturbation Techniques. Wiley, New York. Robiscoe, R.T. (1978) Phys. Rev. A-17, 247.Google Scholar
  43. Rosen, N. and C. Zener (1932) Phys. Rev. 40, 502.zbMATHCrossRefGoogle Scholar
  44. Rothenberg, J.E. and D. Grischkowsky (1987) Opt. Lett. 12, 99.CrossRefGoogle Scholar
  45. Sargent, M., III, M.O. Scully, and W.E. Lamb, Jr. (1974) Laser Physics. Addison-Wesley, Reading, Massachusetts.Google Scholar
  46. Thomas, D.G., L.K. Anderson, M.I. Cohen, E.I. Gordon, and P.K. Runge (1982) Lightwave communication. In Innovations in Telecommunications, J.T. Manassah, ed. Academic Press, New York.Google Scholar
  47. Tien, P.K., J.P. Gordon, and J.R. Whinnery (1965) Proc. IEEE 53, 129.CrossRefGoogle Scholar
  48. Tomlinson, W.J., R.H. Stolen, and C.V. Shank (1984) J. Opt. Soc. Am. Bl, 139. Treacy, E.B. (1969) IEEE J. Quantum Electron. 0E-5, 454.Google Scholar
  49. Tzoar, N. and M. Jain (1979) Propagation of nonlinear optical pulses in fibers. In Fiber Optics, B. Bendow and S. Mitra, eds. Plenum, New York.Google Scholar
  50. Yang, G. and Y.R. Shen (1984) Opt. Lett. 9, 510.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jamal T. Manassah

There are no affiliations available

Personalised recommendations