Skip to main content

Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers

  • Chapter
The Supercontinuum Laser Source

Abstract

The use of silica fibers for transmission of optical pulses has become widespread, as is evident from the recent advances in optical fiber communications (Basch, 1986; Miller and Kaminow, 1988). For pulses not too short (pulse width > 1 ns) and not too intense (peak power < 10 mW), the fiber plays a passive role (except for energy loss) and acts as a transporter of optical pulses from one place to another without significantly affecting their shape or spectrum. However, as pulses become shorter and more intense, two physical mechanisms, chromatic dispersion and index nonlinearity, both intrinsic to the silica material, start to affect the pulse shape and spectrum during propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, G.P. (1987) Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–883.

    Article  Google Scholar 

  • Agrawal, G.P. and M.J. Potasek (1986) Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Phys. Rev. A 33, 1765–1776.

    Article  Google Scholar 

  • Alfano, R.R. (1985) Ultrafast supercontinuum laser source. Proc. Lasers ‘85, pp. 110–122.

    Google Scholar 

  • Alfano, R.R., P.L. Baldeck, F. Raccah, and P.P. Ho (1987) Cross-phase modulation measured in optical fibers. Appl. Opt. 26 3491–3492.

    Article  Google Scholar 

  • Alfano R.R. and S.L. Shapiro (1970) Observation of self-phase modulation in crystals and glasses. Phys. Rev. Lett. 24, 592–594.

    Article  Google Scholar 

  • Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987) Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white light super-continua. Rev. Phys. Appl. 22, 1677–1694.

    Article  Google Scholar 

  • Basch, E.E., ed. (1986) Optical-Fiber Transmission. Sams, Indianapolis, Indiana.

    Google Scholar 

  • Bourkoff, E., W. Zhao, R.L. Joseph, and D.N. Christodoulides (1987) Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion. Opt. Lett. 12, 272–274.

    Article  Google Scholar 

  • Fisher, R.A. and W.K. Bischel (1975) Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. J. Appl. Phys. 46, 4921–4934.

    Article  Google Scholar 

  • Fleck, J.A., J.R. Morris, and M.D. Feit (1976) Time-dependent propagation of high-energy laser beams through the atmosphere. Appl. Phys. 10, 129–160.

    Article  Google Scholar 

  • Fork, R.L., C.H. Brito Cruz, P.C. Becker, and C V Shank (1987) Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485.

    Article  Google Scholar 

  • Gersten, J.I., R.R. Alfano, and M. Belic (1980) Combined stimulated Raman scattering and continuum self-phase modulations. Phys. Rev. A 21, 1222–1224.

    Article  Google Scholar 

  • Golovchenko, E.A., E.M. Dianov, A.N. Pilipetskii, A.M. Prokhorov, and V.N. Serkin (1987) Self-effect and maximum contraction of optical femtosecond wave packets in a nonlinear dispersive medium. JETP Lett. 45, 91–95.

    Google Scholar 

  • Gordon, J.P. (1986) Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664.

    Article  Google Scholar 

  • Gouveia-Neto, A.S., A.S.L. Gomes, and J.R. Taylor (1987) Generation of 33-fsec pulses at 1.32 μm through a high-order soliton effect in a single-mode optical fiber. Opt. Lett. 12, 395–397.

    Article  Google Scholar 

  • Grischkowsky, D. and A.C. Balant (1982) Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett. 41, 1–3.

    Article  Google Scholar 

  • Hasegawa, A. (1983) Amplification and reshaping of optical solitons in glass fiber—IV. Opt. Lett. 8, 650–652.

    Article  Google Scholar 

  • Hasegawa, A. and F. Tappert (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144.

    Google Scholar 

  • Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simpson, and H.T. Shang (1987) Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627.

    Article  Google Scholar 

  • Kean, P.N., K. Smith, and W. Sibbett (1987) Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fiber. IEE Proc. 134, 163–170.

    Google Scholar 

  • Kodama, Y. and A. Hasegawa (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. QE-23, 510–524.

    Google Scholar 

  • Lassen, H.E., F. Mengel, B. Tromborg, N.C. Albertsen, and P.L. Christiansen (1985). Evolution of chirped pulses in nonlinear single-mode fibers. Opt. Lett. 10, 34–36.

    Article  Google Scholar 

  • Lax, M., J.H. Batteh, and G.P. Agrawal (1981) Chenneling of intense electromagnetic beams. J. Appl. Phys. 52, 109–125.

    Article  Google Scholar 

  • Marcuse, D. (1981) Pulse distortion in single-mode fibers. Appl. Opt. 19, 1653–1660.

    Article  Google Scholar 

  • Miller, S.E. and I.P. Kaminow, eds. (1988) Optical Fiber Telecommunications II. Academic Press, Boston, Massachusetts.

    Google Scholar 

  • Mitschke, F.M. and L.F. Mollenauer (1986). Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661.

    Article  Google Scholar 

  • Mitschke, F.M. and L.F. Mollenauer (1987). Ultrashort pulses from the soliton laser. Opt. Lett. 12, 407–409.

    Article  Google Scholar 

  • Mollenauer, L.F. and R.H. Stolen (1984) The soliton laser. Opt. Lett. 9, 13–15.

    Article  Google Scholar 

  • Mollenauer, L.F., R.H. Stolen, and J.P. Gordon (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1097.

    Article  Google Scholar 

  • Mollenauer, L.F., J.P. Gordon, and M.N. Islam (1986) Soliton propagation in long fibers with periodically compensated loss. IEEE J. Quantum Electron. QE-22, 157–173.

    Google Scholar 

  • Nikolaus, B. and D. Grischkowsky (1983) 12 x pulse compression using optical fibers. Appl. Phys. Lett. 42, 1–2.

    Google Scholar 

  • Schadt, D. and B. Jaskorzynska (1987) Frequency chirp and stimulated Raman scattering influenced by pulse walk-off in optical fibers. J. Opt. Soc. Am. 4, 856–862.

    Article  Google Scholar 

  • Serkin, V.N. (1987) Colored envelope solitons in optical fibers. Sov. Tech. Phys. Lett. 13, 320–321.

    Google Scholar 

  • Shank, C.V., R.L. Fork, R. Yen, R.H. Stolen, and W.J. Tomlinson (1982) Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761–763.

    Article  Google Scholar 

  • Shank, C.V., R.L. Fork, C.H. Brito Cruz, and W. Knox (1986). In Ultrafast Phenomena V, G.R. Fleming and A.E. Siegman, eds. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Smith, R.G. (1972) Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 2489–2494.

    Article  Google Scholar 

  • Stolen, R.H. (1980) Nonlinearity in fiber transmission. Proc. IEEE 68, 1232–1236.

    Article  Google Scholar 

  • Stolen, R.H. and C. Lin (1978) Self-phase modulation in silica optical fibers. Phys. Rev. A 17, 1448–1453.

    Article  Google Scholar 

  • Stolen, R.H., L.F. Mollenauer, and W.J. Tomlinson (1983) Observation of pulse restoration at the soliton period in optical fibers. Opt. Lett. 8, 186–188.

    Article  Google Scholar 

  • Tai, K. and A. Tornita (1986)1100 x optical fiber pulse compression using grating pair and soliton effect at 1.319 pm. Appl. Phys. Lett. 48, 1033–1035.

    Google Scholar 

  • Tomlinson, W.J., R.H. Stolen, and C.V. Shank (1984) Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149.

    Article  Google Scholar 

  • Tomlinson, W.J., R.H. Stolen, and A.M. Johnson (1985) Optical wave breaking in nonlinear optical fibers. Opt. Lett. 10, 457–459.

    Article  Google Scholar 

  • Vysloukh, V.A. and T.A. Matveeva (1987) Influence of inertia of nonlinear response on compression of femtosecond pulses. Sov. J. Quantum Electron. 17, 498–500.

    Article  Google Scholar 

  • Wai, P.K., C.R. Menyuk, H.H. Chen, and Y.C. Lee (1987) Soliton at the zero-group-dispersion wavelength of a single-mode fiber. Opt. Lett. 12, 628–630.

    Article  Google Scholar 

  • Zakharov, V.E. and A.B. Shabat (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69.

    MathSciNet  Google Scholar 

  • Zysset, B., P. Beaud, and W. Hodel (1987) Generation of optical solitons in the wavelength region 1.37–1.49 μm. Appl. Phys. Lett. 50, 1027–1029.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Agrawal, G.P. (1989). Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers. In: Alfano, R.R. (eds) The Supercontinuum Laser Source. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2070-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2070-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2072-3

  • Online ISBN: 978-1-4757-2070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics