Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers

  • Govind P. Agrawal


The use of silica fibers for transmission of optical pulses has become widespread, as is evident from the recent advances in optical fiber communications (Basch, 1986; Miller and Kaminow, 1988). For pulses not too short (pulse width > 1 ns) and not too intense (peak power < 10 mW), the fiber plays a passive role (except for energy loss) and acts as a transporter of optical pulses from one place to another without significantly affecting their shape or spectrum. However, as pulses become shorter and more intense, two physical mechanisms, chromatic dispersion and index nonlinearity, both intrinsic to the silica material, start to affect the pulse shape and spectrum during propagation.


Fiber Length Pulse Shape Pump Pulse Optical Pulse Group Velocity Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, G.P. (1987) Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–883.CrossRefGoogle Scholar
  2. Agrawal, G.P. and M.J. Potasek (1986) Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Phys. Rev. A 33, 1765–1776.CrossRefGoogle Scholar
  3. Alfano, R.R. (1985) Ultrafast supercontinuum laser source. Proc. Lasers ‘85, pp. 110–122.Google Scholar
  4. Alfano, R.R., P.L. Baldeck, F. Raccah, and P.P. Ho (1987) Cross-phase modulation measured in optical fibers. Appl. Opt. 26 3491–3492.CrossRefGoogle Scholar
  5. Alfano R.R. and S.L. Shapiro (1970) Observation of self-phase modulation in crystals and glasses. Phys. Rev. Lett. 24, 592–594.CrossRefGoogle Scholar
  6. Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987) Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white light super-continua. Rev. Phys. Appl. 22, 1677–1694.CrossRefGoogle Scholar
  7. Basch, E.E., ed. (1986) Optical-Fiber Transmission. Sams, Indianapolis, Indiana.Google Scholar
  8. Bourkoff, E., W. Zhao, R.L. Joseph, and D.N. Christodoulides (1987) Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion. Opt. Lett. 12, 272–274.CrossRefGoogle Scholar
  9. Fisher, R.A. and W.K. Bischel (1975) Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. J. Appl. Phys. 46, 4921–4934.CrossRefGoogle Scholar
  10. Fleck, J.A., J.R. Morris, and M.D. Feit (1976) Time-dependent propagation of high-energy laser beams through the atmosphere. Appl. Phys. 10, 129–160.CrossRefGoogle Scholar
  11. Fork, R.L., C.H. Brito Cruz, P.C. Becker, and C V Shank (1987) Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485.CrossRefGoogle Scholar
  12. Gersten, J.I., R.R. Alfano, and M. Belic (1980) Combined stimulated Raman scattering and continuum self-phase modulations. Phys. Rev. A 21, 1222–1224.CrossRefGoogle Scholar
  13. Golovchenko, E.A., E.M. Dianov, A.N. Pilipetskii, A.M. Prokhorov, and V.N. Serkin (1987) Self-effect and maximum contraction of optical femtosecond wave packets in a nonlinear dispersive medium. JETP Lett. 45, 91–95.Google Scholar
  14. Gordon, J.P. (1986) Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664.CrossRefGoogle Scholar
  15. Gouveia-Neto, A.S., A.S.L. Gomes, and J.R. Taylor (1987) Generation of 33-fsec pulses at 1.32 μm through a high-order soliton effect in a single-mode optical fiber. Opt. Lett. 12, 395–397.CrossRefGoogle Scholar
  16. Grischkowsky, D. and A.C. Balant (1982) Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett. 41, 1–3.CrossRefGoogle Scholar
  17. Hasegawa, A. (1983) Amplification and reshaping of optical solitons in glass fiber—IV. Opt. Lett. 8, 650–652.CrossRefGoogle Scholar
  18. Hasegawa, A. and F. Tappert (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144.Google Scholar
  19. Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simpson, and H.T. Shang (1987) Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627.CrossRefGoogle Scholar
  20. Kean, P.N., K. Smith, and W. Sibbett (1987) Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fiber. IEE Proc. 134, 163–170.Google Scholar
  21. Kodama, Y. and A. Hasegawa (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. QE-23, 510–524.Google Scholar
  22. Lassen, H.E., F. Mengel, B. Tromborg, N.C. Albertsen, and P.L. Christiansen (1985). Evolution of chirped pulses in nonlinear single-mode fibers. Opt. Lett. 10, 34–36.CrossRefGoogle Scholar
  23. Lax, M., J.H. Batteh, and G.P. Agrawal (1981) Chenneling of intense electromagnetic beams. J. Appl. Phys. 52, 109–125.CrossRefGoogle Scholar
  24. Marcuse, D. (1981) Pulse distortion in single-mode fibers. Appl. Opt. 19, 1653–1660.CrossRefGoogle Scholar
  25. Miller, S.E. and I.P. Kaminow, eds. (1988) Optical Fiber Telecommunications II. Academic Press, Boston, Massachusetts.Google Scholar
  26. Mitschke, F.M. and L.F. Mollenauer (1986). Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661.CrossRefGoogle Scholar
  27. Mitschke, F.M. and L.F. Mollenauer (1987). Ultrashort pulses from the soliton laser. Opt. Lett. 12, 407–409.CrossRefGoogle Scholar
  28. Mollenauer, L.F. and R.H. Stolen (1984) The soliton laser. Opt. Lett. 9, 13–15.CrossRefGoogle Scholar
  29. Mollenauer, L.F., R.H. Stolen, and J.P. Gordon (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1097.CrossRefGoogle Scholar
  30. Mollenauer, L.F., J.P. Gordon, and M.N. Islam (1986) Soliton propagation in long fibers with periodically compensated loss. IEEE J. Quantum Electron. QE-22, 157–173.Google Scholar
  31. Nikolaus, B. and D. Grischkowsky (1983) 12 x pulse compression using optical fibers. Appl. Phys. Lett. 42, 1–2.Google Scholar
  32. Schadt, D. and B. Jaskorzynska (1987) Frequency chirp and stimulated Raman scattering influenced by pulse walk-off in optical fibers. J. Opt. Soc. Am. 4, 856–862.CrossRefGoogle Scholar
  33. Serkin, V.N. (1987) Colored envelope solitons in optical fibers. Sov. Tech. Phys. Lett. 13, 320–321.Google Scholar
  34. Shank, C.V., R.L. Fork, R. Yen, R.H. Stolen, and W.J. Tomlinson (1982) Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761–763.CrossRefGoogle Scholar
  35. Shank, C.V., R.L. Fork, C.H. Brito Cruz, and W. Knox (1986). In Ultrafast Phenomena V, G.R. Fleming and A.E. Siegman, eds. Springer-Verlag, Heidelberg.Google Scholar
  36. Smith, R.G. (1972) Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 2489–2494.CrossRefGoogle Scholar
  37. Stolen, R.H. (1980) Nonlinearity in fiber transmission. Proc. IEEE 68, 1232–1236.CrossRefGoogle Scholar
  38. Stolen, R.H. and C. Lin (1978) Self-phase modulation in silica optical fibers. Phys. Rev. A 17, 1448–1453.CrossRefGoogle Scholar
  39. Stolen, R.H., L.F. Mollenauer, and W.J. Tomlinson (1983) Observation of pulse restoration at the soliton period in optical fibers. Opt. Lett. 8, 186–188.CrossRefGoogle Scholar
  40. Tai, K. and A. Tornita (1986)1100 x optical fiber pulse compression using grating pair and soliton effect at 1.319 pm. Appl. Phys. Lett. 48, 1033–1035.Google Scholar
  41. Tomlinson, W.J., R.H. Stolen, and C.V. Shank (1984) Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149.CrossRefGoogle Scholar
  42. Tomlinson, W.J., R.H. Stolen, and A.M. Johnson (1985) Optical wave breaking in nonlinear optical fibers. Opt. Lett. 10, 457–459.CrossRefGoogle Scholar
  43. Vysloukh, V.A. and T.A. Matveeva (1987) Influence of inertia of nonlinear response on compression of femtosecond pulses. Sov. J. Quantum Electron. 17, 498–500.CrossRefGoogle Scholar
  44. Wai, P.K., C.R. Menyuk, H.H. Chen, and Y.C. Lee (1987) Soliton at the zero-group-dispersion wavelength of a single-mode fiber. Opt. Lett. 12, 628–630.CrossRefGoogle Scholar
  45. Zakharov, V.E. and A.B. Shabat (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69.MathSciNetGoogle Scholar
  46. Zysset, B., P. Beaud, and W. Hodel (1987) Generation of optical solitons in the wavelength region 1.37–1.49 μm. Appl. Phys. Lett. 50, 1027–1029.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Govind P. Agrawal

There are no affiliations available

Personalised recommendations