The Supercontinuum Laser Source pp 1-32 | Cite as

# Theory of Self-Phase Modulation and Spectral Broadening

## Abstract

Self-phase modulation refers to the phenomenon in which a laser beam propagating in a medium interacts with the medium and imposes a phase modulation on itself. It is one of those very fascinating effects discovered in the early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies in the fact that the strong field of a laser beam is capable of inducing an appreciable intensity-dependent refractive index change in the medium. The medium then reacts back and inflicts a phase change on the incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a finite cross -section, and hence a transverse intensity profile, SPM on the beam should have a transverse spatial dependence, equivalent to a distortion of the wave front. Consequently, the beam will appear to have self-diffracted. Such a self-diffraction action, resulting from SPM in space, is responsible for the well-known nonlinear optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981; Santamato and Shen, 1984). In the case of a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in time. Since the time derivative of the phase of a wave is simply the angular frequency of the wave, SPM also appears as a frequency modulation. Thus, the output beam appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967).

## Keywords

Laser Pulse Simple Theory Ultrashort Pulse Refractive Index Change Molecular Reorientation## Preview

Unable to display preview. Download preview PDF.

## References

- Alfano, R.R. and S.L. Shapiro (1970) Emission in the region 4000–7000 A via four-photon coupling in glass; Observation of self-phase modulation and small scale filaments in crystals and glasses; Direct distortion of electronic clouds of rare-gas atoms in intense electric fields. Phys. Rev. Lett.
**24**, 584, 592, 1219.Google Scholar - Alfano, R.R. and S.L. Shapiro (1971) Picosecond spectroscopy using the inverse Raman effect. Chem. Phys. Lett.
**8**, 631.CrossRefGoogle Scholar - Alfano, R.R., Q. Li, T. Jimbo, J.T. Manassah, and P.P. Ho (1986) Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse. Opt. Lett.
**11**, 626.CrossRefGoogle Scholar - Alfano, R.R., Q. Wang, T. Jimbo, and P.P. Ho (1987) Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe. Phys. Rev. A
**35**, 459.CrossRefGoogle Scholar - Bloembergen N. and P. Lallemand (1966) Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering. Phys. Rev. Lett.
**16**, 81.CrossRefGoogle Scholar - Brewer, R.G. (1967) Frequency shifts in self-focusing light. Phys. Rev. Lett.
**19**, 8.CrossRefGoogle Scholar - Busch, G.E., R.P. Jones, and P.M. Rentzepis (1973) Picosecond spectroscopy using a picosecond continuum. Chem. Phys. Lett.
**18**, 178.CrossRefGoogle Scholar - Cheung, A.C., D.M. Rank, R.Y. Chiao, and C.H. Townes (1968) Phase modulation of Q-switched laser beams in small-scale filaments. Phys. Rev. Lett.
**20**, 786.CrossRefGoogle Scholar - Corkum, P.B., P.P. Ho, R.R. Alfano, and J.T. Manassah (1985) Generation of infrared supercontinuum covering 3–14 pm in dielectrics and semiconductors. Opt. Lett.
**10**, 624.CrossRefGoogle Scholar - Corkum, P.B., C. Rolland, and T. Rao (1986) Supercontinuum generation in gases. Phys. Rev. Lett.
**57**, 2268.CrossRefGoogle Scholar - Cubbedu, R. and F. Zagara (1971) Nonlinear refractive index of CS2 in small-scale filaments. Opt. Commun.
**3**, 310.CrossRefGoogle Scholar - Cubbedu, R., R. Polloni, C.A. Sacchi, O. Svelto, and F. Zagara (1971) Study of small-scale filaments of light in CS2 under picosecond excitation. Phys. Rev. Lett.
**26**, 1009.CrossRefGoogle Scholar - DeMartini, F., C.H. Townes, T.K. Gustafson, and P.L. Kelley (1967) Self-steepening of light pulses. Phys. Rev.
**164**, 312.CrossRefGoogle Scholar - Durbin, S.D., S.M. Arakelian, and Y.R. Shen (1981) Laser-induced diffraction rings from a nematic liquid crystal film. Opt. Lett.
**6**, 411.Google Scholar - Fabellinski, I.L. (1967)
*Molecular Scattering of Light*. Plenum, New York, Chapter V III.Google Scholar - Fisher, R.A. and W. Bischel (1975) Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave light pulses. J. App. Phys.
**46**, 4921.CrossRefGoogle Scholar - Fisher, R.A., B. Suydam, and D. Yevich (1983) Optical phase conjugation for time domain undoing of dispersive self-phase modulation effects. Opt. Lett.
**8**, 611.CrossRefGoogle Scholar - Fork, R.L., C.V. Shank, C. Hirliman, and R. Yen (1983) Femtosecond white-light continuum pulses. Opt. Lett.
**8**, 1.CrossRefGoogle Scholar - Fork, R.L., C.H. Brito Cruz, P.C. Becker, and C.V. Shank (1987). Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett.
**12**, 483.CrossRefGoogle Scholar - Glownia, J., G. Arjavalingam, P. Sorokin, and J. Rothenberg (1986) Amplification of 350-fs pulses in XeC1 excimer gain modules. Opt. Lett.
**11**, 79.CrossRefGoogle Scholar - Gustafson, T.K., J.P. Taran, H.A. Haus, J.R. Lifsitz, and P.L. Kelley (1969) Self-phase modulation, self steepening, and spectral development of light in small-scale trapped filaments. Phys. Rev.
**177**, 306.CrossRefGoogle Scholar - Hellwarth, R.W. (1970) Theory of molecular light scattering spectra using the linear-dipole approximation. J. Chem. Phys.
**52**, 2128.CrossRefGoogle Scholar - Hellwarth, R.W. (1977) Third-order optical susceptibilities of liquids and solids. Prog. Quantum Electron.
**5**, 1.CrossRefGoogle Scholar - Ho, P.P., Q.X. Li, T. Jimbo, Y.L. Ku, and R.R. Alfano (1987) Supercontinuum pulse generation and propagation in a liquid CC14. Appl. Opt.
**26**, 2700.CrossRefGoogle Scholar - Ippen, E.P. and C.V. Shank (1975) Dynamic spectroscopy and subpicosecond pulse compression. Appl. Phys. Lett.
**27**, 488.CrossRefGoogle Scholar - Jones, W.J. and B.P. Stoicheff (1964) Induced absorption at optical frequencies. Phys. Rev. Lett.
**13**, 657.CrossRefGoogle Scholar - Lallemand, P. (1966) Temperature variation of the width of stimulated Raman lines in liquids. Appl. Phys. Lett.
**8**, 276.CrossRefGoogle Scholar - Loy, M.M.T. and Y.R. Shen (1973) Study of self-focusing and small-scale filaments of light in nonlinear media. IEEE J. Quantum Electron. QE-
**9**, 409.Google Scholar - Manassah, J.T., R.R. Shapiro, and M. Mustafa (1985) Spectral distribution of an ultrashort supercontinuum laser source. Phys. Lett. A
**107**, 305.Google Scholar - Manassah, J.T., M.A. Mustafa, R.R. Alfano, and P.P. Ho (1986) Spectral extent and pulse shape of the supercontinuum for ultrashort laser pulse. IEEE J. Quantum Electron. QE-
**22**, 197.Google Scholar - Marburger, J.H. (1975) Self-focusing: theory. Prog. Quantum Electron.
**4**, 35.CrossRefGoogle Scholar - Nakatsuka, H. and D. Grischkowsky (1981) Recompression of optical pulses broadened by passage through optical fibers. Opt. Lett.
**6**, 13.CrossRefGoogle Scholar - Nakatsuka, H., D. Grischkowsky, and A.C. Balant (1981) Nonlinear picosecond pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett.
**47**, 910.CrossRefGoogle Scholar - Nikolaus, B. and D. Grischkowsky (1983a) 12 x pulse compression using optical fibers. Appl. Phys. Lett.
**42**, 1.Google Scholar - Nikolaus, B. and D. Grischkowsky (1983b) 90-fs tunable optical pulses obtained by two-state pulse compression. Appl. Phys. Lett.
**43**, 228.Google Scholar - Penzkofer, A. (1974) Parametrically generated spectra and optical breakdown in H2O and NaCl. Opt. Commun.
**11**, 265.CrossRefGoogle Scholar - Penzkofer, A., A. Laubereau, and W. Kaiser (1973) Stimulated short-wave radiation due to single-frequency resonances of
*X*,*3*,. Phys. Rev. Lett.**31**, 863.CrossRefGoogle Scholar - Penzkofer, A., A. Seilmeier, and W. Kaiser (1975) Parametric four-photon generation of picosecond light at high conversion efficiency. Opt. Commun.
**14**, 363.CrossRefGoogle Scholar - Santamato, E. and Y.R. Shen (1984) Field curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film. Opt. Lett.
**9**, 564.CrossRefGoogle Scholar - Shen, Y.R. (1966) Electrostriction, optical Kerr effect, and self-focusing of laser beams. Phys. Lett.,
**20**, 378.CrossRefGoogle Scholar - Shen Y.R. (1975) Self-focusing: experimental. Prog. Quantum Electron.
**4**, 1.CrossRefGoogle Scholar - Shen, Y.R. (1984)
*The Principles of Nonlinear Optics*. Wiley, New York, Chapters 1 and 16.Google Scholar - Shen, Y.R. and M.M.T. Loy (1971) Theoretical investigation of small-scale filaments of light originating from moving focal spots. Phys. Rev. A
**3**, 2099.CrossRefGoogle Scholar - Shimizu, F. (1967) Frequency broadening in liquids by a short light pulse. Phys. Rev. Lett.
**19**, 1097.CrossRefGoogle Scholar - Shimizu, F. and E. Courtens (1973) Recent results on self-focusing and trapping. In
*Fundamental and Applied Laser Physics*, M.S. Feld, A. Javan, and N.A. Kurnit, eds. Wiley, New York, p. 67.Google Scholar - Stoicheff, B.P. (1963) Characteristics of stimulated Raman radiation generated by coherent light. Phys. Lett.
**7**, 186.CrossRefGoogle Scholar - Stolen, R. and C. Lin (1978) Self-phase modulation in silica optical fibers. Phys. Rev. A
**17**, 1448.CrossRefGoogle Scholar - Topp, M.R. and P.M. Rentzepis (1971) Time-resolved absorption spectroscopy in the 10–12-sec range. J. Appl. Phys.
**42**, 3415.CrossRefGoogle Scholar - Treacy, E.P. (1968) Compression of picosecond light pulses. Phys. Lett.
**28**A, 34.Google Scholar - Treacy, E.P. (1969a) Measurements of picosecond pulse substructure using compression techniques. Appl. Phys. Lett.
**14**, 112.CrossRefGoogle Scholar - Treacy, E.P. (1969b) Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron.
**5**, 454.CrossRefGoogle Scholar - Wong, G.K.L. and Y.R. Shen (1972) Study of spectral broadening in a filament of light. Appl. Phys. Lett.
**21**, 163.CrossRefGoogle Scholar - Yang, G. and Y.R. Shen (1984) Spectral broadening of ultrashort pulses in a nonlinear medium. Opt. Lett.
**9**, 510.CrossRefGoogle Scholar