G Protein-Linked Receptors in the Thyroid

  • Daniela Corda
  • Cinzia Bizzarri
  • Maria Di Girolamo
  • Salvatore Valitutti
  • Alberto Luini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 261)

Abstract

The binding of hormones to membrane receptors results in the activation of intracellular effector(s) such as enzymes or ion channels, which in turn induce a cellular response. In thyroid cells, as in many other cells, growth and differentiation as well as specialized functions such as iodide fluxes and thyroglobulin synthesis are regulated in the above general manner. This chapter is intended to provide an analysis of the types of receptors which in thyroid cells effect this regulation, and of their mechanism of action, with a special emphasis on the role of GTP binding proteins.

Keywords

Muscarinic Receptor Adenylyl Cyclase Phorbol Myristate Acetate Pertussis Toxin Thyroid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schramm, and Z. Selinger, Message transmission: receptor controlled adenylate cyclase system, Science, 225: 1350–1356 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    A.G. Gilman, G Proteins and dual control of adenylate cyclase, Cell, 36: 577–579 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    A.G. Gilman, G proteins: transducers of receptor-generated signals, Ann. Rev. Biochem., 56: 615–649 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    J.P. Casey, and A.G. Gilman, G protein involvement in receptor-effector coupling, J.Biol. Chem., 263: 2577–2580 (1988).PubMedGoogle Scholar
  5. 5.
    T.I. Bonner, The molecular basis of muscarinic receptor diversity, TINS, 12: 148–151 (1989).PubMedGoogle Scholar
  6. 6.
    R.J. Lefkowitz, and M.G. Caron, Adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins, J. Biol. Chem., 263: 4993–4996 (1988).PubMedGoogle Scholar
  7. 7.
    B.K. Kobilka, T.S. Kobilka, K. Daniel, J.W. Regan, M.G. Caron, and R.J. Lefkowitz, Chimeric a2 -, 32-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity, Science, 240: 1310–1316 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    F.S. Ambesi-lmpiombato, R. Picone, and D. Tramontano, Influence of hormones and serum on growth and differentiation of the thyroid cell strain, FRTL, in: “Cold Spring Harbor Symposia on Quantitative Biology”, D.A. Serbasku, G.H. Sato, and A. Pardee, Vol. 9: 483–492, Cold Spring Harbor (1982).Google Scholar
  9. 9.
    F.S. Ambesi-Impiombato, L.A.M. Parks, and H.G. Coon, Culture of hormone-dependent functional epithelial cells from rat thyroids, Proc. Natl. Acad. Sci. USA, 77: 3455–3459 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    W.A. Valente, P. Vitti, L.D. Kohn, M.L. Brandi, C.M. Rotella, R. Toccafondi, D. Tramontano, S.M. Aloj, and F.S. Ambesi-Impiombato, The relationship of growth and adenylate cyclase activity in cultured thyroid cells: separate bioeffects of thyrotropin, Endocrinology, 112: 71–79 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Vitti, C.M. Rotella, W.A. Valente, J. Cohen, S.M. Aloj, P. Laccetti, F.S. Ambesi-Impiombato, E.F. Grollman, A. Pinchera, R. Toccafondi, and L.D. Kohn, Characterization of the optimal stimulatory effects of Graves’ monoclonal and serum immunoglobulin G on adenosine 3’, 5’ -monophosphate production in FRTL-5 thyroid cells: a potential clinical assay, J. Clin. Endocrinol. Metab., 57: 782–791 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    S.J. Weiss, N.J. Philp, F.S. Ambesi-Impiombato, and E.F. Grollman, Thyrotropin-stimulated iodide transport mediated by adenosine 3’, 5’-monophosphate and dependent on protein synthesis, Endocrinology, 114: 1099–1107 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    S.J. Weiss, N.J. Philp, and E.F. Grollman, Iodide transport in a continuous line of cultured cells from rat thyroid, Endocrinology, 114: 1090–1098 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    S.J. Weiss, N.J. Philp, and E.F. Grollman, Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Cat+, Endocrinology, 114: 1108–1113 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    F. Lami, P. Roger, L. Contor, S. Reuse, E. Raspe, J. Van Sande, and J.E. Dumont, Control of thyroid cell proliferation: the example of the dog thyrocyte, in: Hormones and cell regulation, J. Nunez, and J.E. Dumont, 153: 169–180. John Libey, London (1987).Google Scholar
  16. 16.
    J.E. Dumont, J.C. Jauniaux, and P.P. Roger, The cyclic AMP-mediated stimulation of cell proliferation, TIBS, 14: 67–71 (1989).PubMedGoogle Scholar
  17. 17.
    D. Tramontano, A.C. Moses, B.M. Veneziani, and S.H. Ingbar, Adenosine 3’, 5’-monophosphate mediates both the mitogenic effect of thyrotropin and its ability to amplify the response to insulin-like growth factor I in FRTL5 cells, Endocrinology, 122: 127–132 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Jin, F.J. Hornicek, D. Neylan, M. Zakarija, and J.M. Mc Kenzie, Evidence that adenosine 3’-5’ monophosphate mediates stimulation of growth in FRTL5 cells, Endocrinology, 119: 802–810 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    D. Tramontano, G.W. Cushing, A.C. Moses, and S.H. Ingbar, Insulin-ike growth factor I stimulates the growth of rat thyroid cells in culture and synergizes the growth-promoting effect of thyrotropin and of Graves IgG, Endocrinology, 119: 940–942 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    Isozaki, and L.D. Kohn, Control of c-fos and c-myc proto-oncogene induction in rat thyroid cells in culture, Mol. EndocrinoL, 1: 839–848 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Corda, C. Marcocci, L.D. Kohn, J. Axelrod, and A. Luini, Association of the changes in cytosolic Cat+ and iodide efflux induced by thyrotropin and by the stimulation of al-adrenergic receptors in cultured rat thyroid cells, J. Biol. Chem., 260: 9230–9236 (1985).PubMedGoogle Scholar
  22. 22.
    D. Corda, L. lacovelli, and M. Di Girolamo, Coupling of the a1-adrenergic and thyrotropin receptors to second messenger systems in thyroid cells. Role of G-proteins, in: “Horizons in Endocrinology’, M. Maggi and C.A. Johnston, 169–180 Raven Press, New York, (1988).Google Scholar
  23. 23.
    D. Corda, M. Di Girolamo, and C. Bizzarri, Variety of signal transduction pathways in FRTL5 thyroid cells, in: FRTL5 Today, F.S. Ambesi-Impiombato and H. Perrild, 95–98 Elsevier, Amsterdam, (1989).Google Scholar
  24. 24.
    C. Marcocci, A. Luini, P. Santisteban, and E.F. Grollman, Norepinephrine and thyrotropin stimulation of iodide efflux in FRTL-5 thyroid cells involves metabolites of arachidonic acid and is associated whith the iodination of thyroglobulin, Endocrinology, 120: 1127–1133 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    R.M. Burch, A. Luini, D.E. Mais, D. Corda, J.Y.Vanderhoek, L.D. Kohn, and J. Axelrod, al -Adrenergic stimulation of arachidonic acid release and metabolism in rat thyroid cell line, J. BioL Chem., 261: 11236–11241 (1986).Google Scholar
  26. 26.
    D. Corda, R.D. Sekura, and L.D. Kohn, Thyrotropin effect on the availability of Ni regulatory protein in FRTL-5 rat thyroid cells to ADP-ribosylation by pertussis toxin, Eur. J. Biochem., 166: 475–481 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    L.D. Kohn, S.M. Aloj, D. Tombaccini, C.M. Rotella, R. Toccafondi, C. Marcocci, D. Corda, and E.F. Grollman, The thyrotropin receptor, Biochemical Action of Hormones, 12: 457–512 (1985).CrossRefGoogle Scholar
  28. 28.
    F. Ribeiro-Neto, L. Birnbaumer, and J.B, Field, Incubation of bovine thyroid slices with thyrotropin is associated with a decrease in the ability of pertussis toxin to adenosine diphosphate ribosylate guanine nucleotide regulatory components, Mol. EndocrinoL, 1: 482–490 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Corda, L. lacovelli, and M. Di Girolamo, Thyrotropin regulated ADP ribosyl-transferase activity in thyroid cells, Submitted for publication.Google Scholar
  30. 30.
    P. Vitti, M.J.S. De Wolf, A.M. Acquaviva, M. Epstein, and L.D. Kohn, Thyrotropin stimulation of the ADP-ribosyltransferase activity of bovine thyroid membranes, Proc. Natl. Acad. Sci. U.S.A., 79: 1525–1529 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    C. Marcocci, J.L. Cohen, and E.F. Grollman, Effect of actinomycin D on iodide transport in FRTL-5 thyroid cells, Endocrinology, 115: 2123–2132 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    D. Corda, and L.D. Kohn, Thyrotropin upregulates al-adrenergic receptors in rat FRTL-5 thyroid cells, Proc. Natl. Acad. Sci. USA, 82: 8677–8680 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    E. Bone, D.W. Ailing, and E.F. Grollman, Norepinephrine and thyroid-stimulating hormone induce inositol phosphate accumulation in FRTL-5 cells, Endocrinology, 219: 2193–2200 (1986).CrossRefGoogle Scholar
  34. 34.
    H.A. Lippes, and S.W. Spaulding, Peroxide formation and glucose oxidation in calf thyroid slices: regulation by protein kinase-C and cytosolic free calcium, Endocrinology, 118: 1306–1311 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    K. Haraguchi, C.S.S. Rani, and J.B. Field, Effects of thyrotropin, carbachol, and protein kinase-C stimulators on glucose transport and glucose oxidation by primary cultures of dog thyroid cells, Endocrinology, 123: 1288–1295 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    N.J. Philp, and E.F. Grollman, Thyrotropin and norepinephrine stimulate the metabolism of phosphoinositides in FRTL-5 thyroid cells, FEBS Lett., 202: 193–196 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    J.B. Field, P.A. Ealey, N.J. Marshall, and S. Cockcroft, Thyroid-stimulating hormone stimulates increases in inositol phosphates as well as cyclic AMP in the FRTL-5 rat thyroid cell line, Biochem J., 248: (1987).Google Scholar
  38. 38.
    D. Corda, and L.D. Kohn, Role of pertussis toxin sensitive G proteins in the alph a1adrenergic receptor but not in the thyrotropin receptor mediated activation of membrane phospholipases and iodide fluxes in FRTL-5 thyroid cells, Biochem. Biophys. Res. Commun., 141: 1000–1006 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    K. Yamashita, and J.B. Field, Elevation of cyclic guanosine 3’, 5’-monophosphate levels in dog thyroid slices caused by acetylcholine and sodium fluoride, J. Biol. Chem., 247: 7062–7066 (1972).PubMedGoogle Scholar
  40. 40.
    M.L. Maayan, E.M. Volpert, and A. From, Acetylcholine and norepinephrine: compared actions on thyroid metabolism, Endocrinology, 112: 1358–1362 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Van Sande, J.E. Dumont, A. Melander, and F. Sundler, Presence and influence of cholinergic nerves in the human thyroid, J. Clin. Endocrinol. and Metab., 51: 500–502 (1980).CrossRefGoogle Scholar
  42. 42.
    C.S.S. Rani, A.E. Boyd, and J.B. Field, Effects of acetylcholine, TSH and other stimulators on intracellular calcium concentration in dog thyroid cells, Biochem. Biophys. Res. Commun., 131: 1041–1047 (1985).CrossRefGoogle Scholar
  43. 43.
    I. Graff, J. Mockel, E. Laurent, C. Erneux, and J.E. Dumont, Carbachol and sodium fluoride, but not TSH, stimulate the generation of inositol phosphates in the dog thyroid, FEBS Lett., 210: 204–210 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Di Girolamo, C. Bizzarri, and D. Corda, A muscarinic receptor is coupled to phospholipase A2 in FRTL5 thyroid cells, in: FRTL5 Today,F.S. Ambesi-Impiombato and H. Perrild, Elsevier, Amsterdam, In press.Google Scholar
  45. 45.
    C. Bizzarri, M. Di Girolamo, and D. Corda, Muscarinic inhibition of the norepinephrine induced increase in cytosolic calcium in FRTL5 thyroid cells, in: FRTL5 Today,F.S. Ambesi-Impiombato and H. Perrild, Elsevier, Amsterdam, In press.Google Scholar
  46. 46.
    M. Di Girolamo, C. Bizzarri, and D. Corda, Muscarinic regulation of phospholipase A2 in thyroid cells - Role of a G protein, Submitted for publication.Google Scholar
  47. 47.
    C. Bizzarri, M. Di Girolamo and D. Corda, Muscarinic inhibition of phospholipase C activity. A direct mechanism involving a G protein, Submitted for publication.Google Scholar
  48. 48.
    C. Bizzarri, M. Di Girolamo, and D. Corda, Muscarinic inhibition of phospholipase C activity in thyroid cells. Involvement of an inhibitory G protein, (abstracts), Eur. J. Cell Biol., Suppl. Vol. 48, In press.Google Scholar
  49. 49.
    S. Cockcroft, Polyphosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp, TIBS, 12: 75–78 (1987).Google Scholar
  50. 50.
    L. Vallar, and J. Meldolesi, Mechanisms of signal transduction at the dopamine D2 receptor, TIPS, 10: 74–77 (1989).PubMedGoogle Scholar
  51. 51.
    D. Corda, and L.D. Kohn, Phorbol myristate acetate inhibits a1-adrenergically but not thyrotropin-regulated functions in FRTL-5 rat thyroid cells, Endocrinology, 120: 1152–1160 (1987).PubMedCrossRefGoogle Scholar
  52. 52.
    L.M.F. Leeb-Lundberg, S. Cotecchia, J.W. Lomasney, J.F. DeBernardis, R.J. Lefkowitz, and M.G. Caron, Phorbol esters promote al-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. NatL Acad. Sci. USA, 82: 5651–5655 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    C.S.S. Rani, and J.B. Field, Comparison of effects of thyrotropin, phorbol esters, norepinephrine, and carbachol on iodide organification in dog thyroid slices, follicles, and cultured cells, Endocrinology, 122: 1915–1922 (1988).PubMedCrossRefGoogle Scholar
  54. 54.
    L. Contor, F. Lamy, R. Lecocq, P.P. Roger, and J.E. Dumont, Differential protein phosphorylation in induction of thyroid cell proliferation by thyrotropin, epidermal growth factor, or phorbol ester, Mol. Cell Biol., 8: 2494–2503 (1988).PubMedGoogle Scholar
  55. 55.
    B. Haye, J.L. Aublin, S. Champion, B. Lambert, and C. Jacquemin, Tetradecanoyl phorbol-13-acetate counteracts the responsiveness of cultured thyroid cells to thyrotropin, Biochem. Pharm., 34: 3795–3802 (1985).PubMedCrossRefGoogle Scholar
  56. 56.
    L.K. Bachrach, M.C. Eggo, W.W. Mak, and G.N. Burrow, Phorbol esters stimulate growth and inhibit differentiation in cultured thyroid cells, Endocrinology, 116: 1603–1609 (1985).PubMedCrossRefGoogle Scholar
  57. 57.
    K. Takada, N. Amino, T. Tetsumoto, and K. Miyai, Phorbol esters have a dual action through protein kinase C in regulation of proliferation of FRTL5 cells, FEBS Lett., 234: 13–16 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    A. Lombardi, B.M. Veneziani, D. Tramontano, and S. H. lngbar, Independent and interactive effects of tetradecanoyl phorbol acetate on growth and differentiated functions of FRTL-5 cells, Endocrinology, 123: 1544–1552 (1988).PubMedCrossRefGoogle Scholar
  59. 59.
    R.M. Burch, A. Luini, and J. Axelrod, Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to al-adrenergic stimulation in FRTL-5 thyroid cells, Proc. Natl. Acad. Sci. USA, 83: 7201–7205 (1986).PubMedCrossRefGoogle Scholar
  60. 60.
    F. Okajima, K. Sho, and. Y. Kondo, Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells, Endocrinology, 123: 1035–1043 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Daniela Corda
    • 1
  • Cinzia Bizzarri
    • 1
  • Maria Di Girolamo
    • 1
  • Salvatore Valitutti
    • 1
  • Alberto Luini
    • 1
  1. 1.Istituto di Ricerche Biomediche e Farmacologiche “Mario Negri”Consorzio Mario Negri SudS. Maria Imbaro ChietiItaly

Personalised recommendations