Skip to main content

G Protein-Linked Receptors in the Thyroid

  • Chapter
Control of the Thyroid Gland

Abstract

The binding of hormones to membrane receptors results in the activation of intracellular effector(s) such as enzymes or ion channels, which in turn induce a cellular response. In thyroid cells, as in many other cells, growth and differentiation as well as specialized functions such as iodide fluxes and thyroglobulin synthesis are regulated in the above general manner. This chapter is intended to provide an analysis of the types of receptors which in thyroid cells effect this regulation, and of their mechanism of action, with a special emphasis on the role of GTP binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Schramm, and Z. Selinger, Message transmission: receptor controlled adenylate cyclase system, Science, 225: 1350–1356 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. A.G. Gilman, G Proteins and dual control of adenylate cyclase, Cell, 36: 577–579 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. A.G. Gilman, G proteins: transducers of receptor-generated signals, Ann. Rev. Biochem., 56: 615–649 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. J.P. Casey, and A.G. Gilman, G protein involvement in receptor-effector coupling, J.Biol. Chem., 263: 2577–2580 (1988).

    PubMed  CAS  Google Scholar 

  5. T.I. Bonner, The molecular basis of muscarinic receptor diversity, TINS, 12: 148–151 (1989).

    PubMed  CAS  Google Scholar 

  6. R.J. Lefkowitz, and M.G. Caron, Adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins, J. Biol. Chem., 263: 4993–4996 (1988).

    PubMed  CAS  Google Scholar 

  7. B.K. Kobilka, T.S. Kobilka, K. Daniel, J.W. Regan, M.G. Caron, and R.J. Lefkowitz, Chimeric a2 -, 32-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity, Science, 240: 1310–1316 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. F.S. Ambesi-lmpiombato, R. Picone, and D. Tramontano, Influence of hormones and serum on growth and differentiation of the thyroid cell strain, FRTL, in: “Cold Spring Harbor Symposia on Quantitative Biology”, D.A. Serbasku, G.H. Sato, and A. Pardee, Vol. 9: 483–492, Cold Spring Harbor (1982).

    Google Scholar 

  9. F.S. Ambesi-Impiombato, L.A.M. Parks, and H.G. Coon, Culture of hormone-dependent functional epithelial cells from rat thyroids, Proc. Natl. Acad. Sci. USA, 77: 3455–3459 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. W.A. Valente, P. Vitti, L.D. Kohn, M.L. Brandi, C.M. Rotella, R. Toccafondi, D. Tramontano, S.M. Aloj, and F.S. Ambesi-Impiombato, The relationship of growth and adenylate cyclase activity in cultured thyroid cells: separate bioeffects of thyrotropin, Endocrinology, 112: 71–79 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. P. Vitti, C.M. Rotella, W.A. Valente, J. Cohen, S.M. Aloj, P. Laccetti, F.S. Ambesi-Impiombato, E.F. Grollman, A. Pinchera, R. Toccafondi, and L.D. Kohn, Characterization of the optimal stimulatory effects of Graves’ monoclonal and serum immunoglobulin G on adenosine 3’, 5’ -monophosphate production in FRTL-5 thyroid cells: a potential clinical assay, J. Clin. Endocrinol. Metab., 57: 782–791 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. S.J. Weiss, N.J. Philp, F.S. Ambesi-Impiombato, and E.F. Grollman, Thyrotropin-stimulated iodide transport mediated by adenosine 3’, 5’-monophosphate and dependent on protein synthesis, Endocrinology, 114: 1099–1107 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. S.J. Weiss, N.J. Philp, and E.F. Grollman, Iodide transport in a continuous line of cultured cells from rat thyroid, Endocrinology, 114: 1090–1098 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. S.J. Weiss, N.J. Philp, and E.F. Grollman, Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Cat+, Endocrinology, 114: 1108–1113 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. F. Lami, P. Roger, L. Contor, S. Reuse, E. Raspe, J. Van Sande, and J.E. Dumont, Control of thyroid cell proliferation: the example of the dog thyrocyte, in: Hormones and cell regulation, J. Nunez, and J.E. Dumont, 153: 169–180. John Libey, London (1987).

    Google Scholar 

  16. J.E. Dumont, J.C. Jauniaux, and P.P. Roger, The cyclic AMP-mediated stimulation of cell proliferation, TIBS, 14: 67–71 (1989).

    PubMed  CAS  Google Scholar 

  17. D. Tramontano, A.C. Moses, B.M. Veneziani, and S.H. Ingbar, Adenosine 3’, 5’-monophosphate mediates both the mitogenic effect of thyrotropin and its ability to amplify the response to insulin-like growth factor I in FRTL5 cells, Endocrinology, 122: 127–132 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. S. Jin, F.J. Hornicek, D. Neylan, M. Zakarija, and J.M. Mc Kenzie, Evidence that adenosine 3’-5’ monophosphate mediates stimulation of growth in FRTL5 cells, Endocrinology, 119: 802–810 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. D. Tramontano, G.W. Cushing, A.C. Moses, and S.H. Ingbar, Insulin-ike growth factor I stimulates the growth of rat thyroid cells in culture and synergizes the growth-promoting effect of thyrotropin and of Graves IgG, Endocrinology, 119: 940–942 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. Isozaki, and L.D. Kohn, Control of c-fos and c-myc proto-oncogene induction in rat thyroid cells in culture, Mol. EndocrinoL, 1: 839–848 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. D. Corda, C. Marcocci, L.D. Kohn, J. Axelrod, and A. Luini, Association of the changes in cytosolic Cat+ and iodide efflux induced by thyrotropin and by the stimulation of al-adrenergic receptors in cultured rat thyroid cells, J. Biol. Chem., 260: 9230–9236 (1985).

    PubMed  CAS  Google Scholar 

  22. D. Corda, L. lacovelli, and M. Di Girolamo, Coupling of the a1-adrenergic and thyrotropin receptors to second messenger systems in thyroid cells. Role of G-proteins, in: “Horizons in Endocrinology’, M. Maggi and C.A. Johnston, 169–180 Raven Press, New York, (1988).

    Google Scholar 

  23. D. Corda, M. Di Girolamo, and C. Bizzarri, Variety of signal transduction pathways in FRTL5 thyroid cells, in: FRTL5 Today, F.S. Ambesi-Impiombato and H. Perrild, 95–98 Elsevier, Amsterdam, (1989).

    Google Scholar 

  24. C. Marcocci, A. Luini, P. Santisteban, and E.F. Grollman, Norepinephrine and thyrotropin stimulation of iodide efflux in FRTL-5 thyroid cells involves metabolites of arachidonic acid and is associated whith the iodination of thyroglobulin, Endocrinology, 120: 1127–1133 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. R.M. Burch, A. Luini, D.E. Mais, D. Corda, J.Y.Vanderhoek, L.D. Kohn, and J. Axelrod, al -Adrenergic stimulation of arachidonic acid release and metabolism in rat thyroid cell line, J. BioL Chem., 261: 11236–11241 (1986).

    CAS  Google Scholar 

  26. D. Corda, R.D. Sekura, and L.D. Kohn, Thyrotropin effect on the availability of Ni regulatory protein in FRTL-5 rat thyroid cells to ADP-ribosylation by pertussis toxin, Eur. J. Biochem., 166: 475–481 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. L.D. Kohn, S.M. Aloj, D. Tombaccini, C.M. Rotella, R. Toccafondi, C. Marcocci, D. Corda, and E.F. Grollman, The thyrotropin receptor, Biochemical Action of Hormones, 12: 457–512 (1985).

    Article  CAS  Google Scholar 

  28. F. Ribeiro-Neto, L. Birnbaumer, and J.B, Field, Incubation of bovine thyroid slices with thyrotropin is associated with a decrease in the ability of pertussis toxin to adenosine diphosphate ribosylate guanine nucleotide regulatory components, Mol. EndocrinoL, 1: 482–490 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. D. Corda, L. lacovelli, and M. Di Girolamo, Thyrotropin regulated ADP ribosyl-transferase activity in thyroid cells, Submitted for publication.

    Google Scholar 

  30. P. Vitti, M.J.S. De Wolf, A.M. Acquaviva, M. Epstein, and L.D. Kohn, Thyrotropin stimulation of the ADP-ribosyltransferase activity of bovine thyroid membranes, Proc. Natl. Acad. Sci. U.S.A., 79: 1525–1529 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. C. Marcocci, J.L. Cohen, and E.F. Grollman, Effect of actinomycin D on iodide transport in FRTL-5 thyroid cells, Endocrinology, 115: 2123–2132 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. D. Corda, and L.D. Kohn, Thyrotropin upregulates al-adrenergic receptors in rat FRTL-5 thyroid cells, Proc. Natl. Acad. Sci. USA, 82: 8677–8680 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. E. Bone, D.W. Ailing, and E.F. Grollman, Norepinephrine and thyroid-stimulating hormone induce inositol phosphate accumulation in FRTL-5 cells, Endocrinology, 219: 2193–2200 (1986).

    Article  Google Scholar 

  34. H.A. Lippes, and S.W. Spaulding, Peroxide formation and glucose oxidation in calf thyroid slices: regulation by protein kinase-C and cytosolic free calcium, Endocrinology, 118: 1306–1311 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. K. Haraguchi, C.S.S. Rani, and J.B. Field, Effects of thyrotropin, carbachol, and protein kinase-C stimulators on glucose transport and glucose oxidation by primary cultures of dog thyroid cells, Endocrinology, 123: 1288–1295 (1988).

    Article  PubMed  CAS  Google Scholar 

  36. N.J. Philp, and E.F. Grollman, Thyrotropin and norepinephrine stimulate the metabolism of phosphoinositides in FRTL-5 thyroid cells, FEBS Lett., 202: 193–196 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. J.B. Field, P.A. Ealey, N.J. Marshall, and S. Cockcroft, Thyroid-stimulating hormone stimulates increases in inositol phosphates as well as cyclic AMP in the FRTL-5 rat thyroid cell line, Biochem J., 248: (1987).

    Google Scholar 

  38. D. Corda, and L.D. Kohn, Role of pertussis toxin sensitive G proteins in the alph a1adrenergic receptor but not in the thyrotropin receptor mediated activation of membrane phospholipases and iodide fluxes in FRTL-5 thyroid cells, Biochem. Biophys. Res. Commun., 141: 1000–1006 (1986).

    Article  PubMed  CAS  Google Scholar 

  39. K. Yamashita, and J.B. Field, Elevation of cyclic guanosine 3’, 5’-monophosphate levels in dog thyroid slices caused by acetylcholine and sodium fluoride, J. Biol. Chem., 247: 7062–7066 (1972).

    PubMed  CAS  Google Scholar 

  40. M.L. Maayan, E.M. Volpert, and A. From, Acetylcholine and norepinephrine: compared actions on thyroid metabolism, Endocrinology, 112: 1358–1362 (1983).

    Article  PubMed  CAS  Google Scholar 

  41. J. Van Sande, J.E. Dumont, A. Melander, and F. Sundler, Presence and influence of cholinergic nerves in the human thyroid, J. Clin. Endocrinol. and Metab., 51: 500–502 (1980).

    Article  Google Scholar 

  42. C.S.S. Rani, A.E. Boyd, and J.B. Field, Effects of acetylcholine, TSH and other stimulators on intracellular calcium concentration in dog thyroid cells, Biochem. Biophys. Res. Commun., 131: 1041–1047 (1985).

    Article  CAS  Google Scholar 

  43. I. Graff, J. Mockel, E. Laurent, C. Erneux, and J.E. Dumont, Carbachol and sodium fluoride, but not TSH, stimulate the generation of inositol phosphates in the dog thyroid, FEBS Lett., 210: 204–210 (1987).

    Article  PubMed  CAS  Google Scholar 

  44. M. Di Girolamo, C. Bizzarri, and D. Corda, A muscarinic receptor is coupled to phospholipase A2 in FRTL5 thyroid cells, in: FRTL5 Today,F.S. Ambesi-Impiombato and H. Perrild, Elsevier, Amsterdam, In press.

    Google Scholar 

  45. C. Bizzarri, M. Di Girolamo, and D. Corda, Muscarinic inhibition of the norepinephrine induced increase in cytosolic calcium in FRTL5 thyroid cells, in: FRTL5 Today,F.S. Ambesi-Impiombato and H. Perrild, Elsevier, Amsterdam, In press.

    Google Scholar 

  46. M. Di Girolamo, C. Bizzarri, and D. Corda, Muscarinic regulation of phospholipase A2 in thyroid cells - Role of a G protein, Submitted for publication.

    Google Scholar 

  47. C. Bizzarri, M. Di Girolamo and D. Corda, Muscarinic inhibition of phospholipase C activity. A direct mechanism involving a G protein, Submitted for publication.

    Google Scholar 

  48. C. Bizzarri, M. Di Girolamo, and D. Corda, Muscarinic inhibition of phospholipase C activity in thyroid cells. Involvement of an inhibitory G protein, (abstracts), Eur. J. Cell Biol., Suppl. Vol. 48, In press.

    Google Scholar 

  49. S. Cockcroft, Polyphosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp, TIBS, 12: 75–78 (1987).

    CAS  Google Scholar 

  50. L. Vallar, and J. Meldolesi, Mechanisms of signal transduction at the dopamine D2 receptor, TIPS, 10: 74–77 (1989).

    PubMed  CAS  Google Scholar 

  51. D. Corda, and L.D. Kohn, Phorbol myristate acetate inhibits a1-adrenergically but not thyrotropin-regulated functions in FRTL-5 rat thyroid cells, Endocrinology, 120: 1152–1160 (1987).

    Article  PubMed  CAS  Google Scholar 

  52. L.M.F. Leeb-Lundberg, S. Cotecchia, J.W. Lomasney, J.F. DeBernardis, R.J. Lefkowitz, and M.G. Caron, Phorbol esters promote al-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. NatL Acad. Sci. USA, 82: 5651–5655 (1985).

    Article  PubMed  CAS  Google Scholar 

  53. C.S.S. Rani, and J.B. Field, Comparison of effects of thyrotropin, phorbol esters, norepinephrine, and carbachol on iodide organification in dog thyroid slices, follicles, and cultured cells, Endocrinology, 122: 1915–1922 (1988).

    Article  PubMed  CAS  Google Scholar 

  54. L. Contor, F. Lamy, R. Lecocq, P.P. Roger, and J.E. Dumont, Differential protein phosphorylation in induction of thyroid cell proliferation by thyrotropin, epidermal growth factor, or phorbol ester, Mol. Cell Biol., 8: 2494–2503 (1988).

    PubMed  CAS  Google Scholar 

  55. B. Haye, J.L. Aublin, S. Champion, B. Lambert, and C. Jacquemin, Tetradecanoyl phorbol-13-acetate counteracts the responsiveness of cultured thyroid cells to thyrotropin, Biochem. Pharm., 34: 3795–3802 (1985).

    Article  PubMed  CAS  Google Scholar 

  56. L.K. Bachrach, M.C. Eggo, W.W. Mak, and G.N. Burrow, Phorbol esters stimulate growth and inhibit differentiation in cultured thyroid cells, Endocrinology, 116: 1603–1609 (1985).

    Article  PubMed  CAS  Google Scholar 

  57. K. Takada, N. Amino, T. Tetsumoto, and K. Miyai, Phorbol esters have a dual action through protein kinase C in regulation of proliferation of FRTL5 cells, FEBS Lett., 234: 13–16 (1988).

    Article  PubMed  CAS  Google Scholar 

  58. A. Lombardi, B.M. Veneziani, D. Tramontano, and S. H. lngbar, Independent and interactive effects of tetradecanoyl phorbol acetate on growth and differentiated functions of FRTL-5 cells, Endocrinology, 123: 1544–1552 (1988).

    Article  PubMed  CAS  Google Scholar 

  59. R.M. Burch, A. Luini, and J. Axelrod, Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to al-adrenergic stimulation in FRTL-5 thyroid cells, Proc. Natl. Acad. Sci. USA, 83: 7201–7205 (1986).

    Article  PubMed  CAS  Google Scholar 

  60. F. Okajima, K. Sho, and. Y. Kondo, Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells, Endocrinology, 123: 1035–1043 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corda, D., Bizzarri, C., Di Girolamo, M., Valitutti, S., Luini, A. (1989). G Protein-Linked Receptors in the Thyroid. In: Ekholm, R., Kohn, L.D., Wollman, S.H. (eds) Control of the Thyroid Gland. Advances in Experimental Medicine and Biology, vol 261. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2058-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2058-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2060-0

  • Online ISBN: 978-1-4757-2058-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics