Excess Iodide Inhibits the Thyroid by Multiple Mechanisms

  • J. Wolff
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 261)


The many nonsubstrate effects of iodide in the thyroid appear to be due to at least four mechanisms: 1) a possible anion effect of iodide for which the supporting data are conflicting; 2) an inhibition of organic iodine formation (the so-called Wolff-Chaikoff effect); 3) the iodination of critical enzymes in the thyroid gland; and 4) the inhibition of cellular processes by iodinated products such as oxidized iodine itself, or an oxidation reaction involving iodine. The separation into these categories is not firm, but circumstantial evidence suggests that the mechanisms are different. In addition, high levels of iodide will saturate the iodide pump (Ki ≈3×10−5M) (1). In this case, however, the amounts of iodide which enter the thyroid cell remain large, despite transport saturation and are replaced by diffused iodide. Hence this subject will not be discussed here.


Arachidonic Acid Thyroid Peroxidase Organic Iodine Iodide Transport Bovine Thyroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wolff, Congenital goiter with defective iodide transport, Endocrine Rev. 4: 240 (1983).Google Scholar
  2. 2.
    T. Onaya, T. Tomizawa, T. Yamada, and K. Shichijo, Further studies on inhibitory effect of excess iodide on thyroidal hormone release in the rat, Endocrinol. 79: 138 (1966).Google Scholar
  3. 3.
    I. Mahmoud, I. Colin, M-C, Many, and J-F, Denef. Direct toxic effect of iodide excess on iodine-deficient thyroid glands, Exp. Molec. Pathol. 44:259 (1986).Google Scholar
  4. 4.
    M.L. Maayan, S.H. Ingbar, Acute depletion of thyroid ATP and pyridine nucleotides following injection of iodine in the rat, Endocrinol. 86: 83 (1970).Google Scholar
  5. 5.
    E. Ogata, Y, Yoshitoshi, K, Nishiki, and S. Kobayashi, Dual effect of iodide IV on reduced pyridine nucleotides in rabbit thyroid in situ, Endocrinol. 90: 169 (1972).Google Scholar
  6. 6.
    L. Wartofsky, B. Ransil, S.H. Ingbar, Inhibition of iodine of the release of thyroxine from the thyroid gland of patients with thyrotoxicosis, J. Clin. Invest. 49:78 (1970).Google Scholar
  7. 7.
    K. Kasai, H. Suzuki, S-I, Shimoda, Effects of PTU and relatively small doses of iodide on early phase treatment of hyperthyroidism, Acta Endocrinol. 93: 315 (1980).Google Scholar
  8. 8.
    J.H. Marigold, A.K. Morgan, D.J. Earle, A.E. Young, and D.N. Croft, Lugol’s iodine: its effect on thyroid blood flow in patients with thyrotoxicosis, Br.J.Surg. 72: 45 (1985).Google Scholar
  9. 9.
    J. Wolff, I.L. Chaikoff, Plasma inorganic iodide as a homeostatic regulator of thyroid function, J.Biol.Chem. 174: 555 (1948).Google Scholar
  10. 10.
    J. Wolff, Iodide goiter and the pharmacologic effects of excess iodide, Am.J.Med. 47: 101 (1969).Google Scholar
  11. 11.
    K.D. Collins, M.W. Washabaugh, The Hofmeister effect and the behavior of water at interfaces, Quart. Rev. Biophys. 18:323 (1985).Google Scholar
  12. 12.
    W.D. Alexander, J. Wolff, Antigoitrogenic properties of certain goitrogens, in: “Current Topics in Thyroid Research”, C. Cassano, M. Andreoli, eds., Academic Press, New York (1965).Google Scholar
  13. 13.
    W.D. Alexander, J. Wolff, Thyroidal iodide transport VIII: Relation between transport, goitrogenic and antigoitrogenic properties of certain anions, Endocrinol. 78: 581 (1966).Google Scholar
  14. 14.
    T. Jolin, G. Morreale de Escobar, and F. Escobar del Rey, 6-Propyl-2-thiouracil vs KC104- -induced goiters, Endocrinol 83: 620 (1968).Google Scholar
  15. 15.
    M.E. Morton, I.L. Chaikoff, S. Rosenfeld, Inhibiting effect of inorganic iodide on the formation in vitro of thyroxine and diiodotyrosine by surviving thyroid tissue, J.Biol.Chem. 154: 381 (1944).Google Scholar
  16. 16.
    S.H. Ingbar, Autoregulation of the thyroid, Mayo Clinic Proc. 47:814 (1972).Google Scholar
  17. 17.
    S. Nagataki, Effect of excess quantities of iodide, in: “Handbook of Physiology”, Section 7, vol III, S.R. Geiger, ed., Am Physiol Soc, Washington, D.C. p 329 (1974).Google Scholar
  18. 18.
    J. Wolff, Mechanistic speculations on the iodide effect, in: “Dietary Iodine and Other Aetiological Factors in Hyperthyroidism” MRC Environmental Epidemiol. Unit Scientific Report, No. 9, Southampton p 18 (1987).Google Scholar
  19. 19.
    M.A. Pisarev, Thyroid autoregulation, J. Endocrinol Invest. 8:475 (1985).Google Scholar
  20. 20.
    W.E. Mayberry, J.E. Rall, and D. Bertoli, Kinetics of iodination: I. A comparison of the kinetics of iodination N-acetyl-L-tyrosine and N-acety1–3 -iodo-L-tyrosine, J.Am.Chem.Soc. 86: 5302 (1964).Google Scholar
  21. 21.
    A. Taurog, Thyroid peroxidase-catalyzed iodination of thyroglobulin; inhibition by excess iodide, Arch.Biochem.Biophys. 139:212 (1970).Google Scholar
  22. 22.
    J. Pommier, D. Deme, J. Nunez, Effect of iodide concentration on thyroxine synthesis catalyzed by thyroid peroxidase, Europ.J.Biochem. 37: 406 (1975).Google Scholar
  23. 23.
    J. Nunez, J. Pommier, Formation of thyroid hormones, Vitam.Horm. 39:175 (1982).Google Scholar
  24. 24.
    N. Abdelmoumene, J.M. Gavaret, J. Pommier, J. Nunez, A defective thyroid peroxidase in a case of Pendred’s syndrome, J.Mol.Med. 3:305 (1978).Google Scholar
  25. 25.
    S. Ohtaki, H. Nakagawa, S. Kimura, I. Yamazaki, Analysis of catalytic intermediates of hog thyroid peroxidase during its iodinating reaction, J.Biol.Chem. 256: 805 (1981).Google Scholar
  26. 26.
    M. Nakamura, I. Yamazaki, S. Ohtaki, and S. Nakumura, Characterization of one and two electron oxidations of glutathione coupled with lactoperoxidase and thyroid peroxidase reactions, J.Biol.Chem. 261: 13923 (1986).Google Scholar
  27. 27.
    H. Kohler, A. Taurog, H.B. Dunford, Spectral studies withL lactoperoxidase and thyroid peroxidase, Arch.Biochem.Biophys. 264:438 (1988).Google Scholar
  28. 28.
    J.L. Michot, J. Osty, and J. Nunez, Regulatory effects of iodide and thiocyanate on tyrosine oxidation catalyzed by thyroid peroxidase, Eur.J.Biochem. 107: 297 (1980).Google Scholar
  29. 29.
    F. Courtin, D. Deme, A. Virion, J.L. Michot, J. Pommier, J. Nunez, The role of lactoperoxidase-H202 compounds in the catalysis of thyroglobulin iodination and thyroid hormone synthesis, Eur.J.Biochem. 124: 603 (1982).Google Scholar
  30. 30.
    K. Yamamoto, L.J. DeGroot, Function of peroxidase and NADPH cytochrome c reductase during the Wolff-Chaikoff effect, Endocrinol 93: 822 (1973).Google Scholar
  31. 31.
    P. Chiraseveenuprapund, I.N. Rosenberg, Effects of H202-generating systems on the Wolff-Chaikoff effect, Endocrinol 109: 2095 (1981).Google Scholar
  32. 32.
    B. Corvilain, J. Van Sande, J.E. Dumont, Inhibition by iodide of iodide binding to proteins: the Wolff-Chaikoff effect is caused by inhibition of H202 generation, Biochem.Biophys.Res.Commun. 154:1287 (1988).Google Scholar
  33. 33.
    R.P. Magnuson, A. Taurog, M.L. Dorris, Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase, J.Biol.Chem. 259: 197 (1984).Google Scholar
  34. 34.
    S.H. Wollmann, F.E. Reed, Acute effect of organic binding of iodine and the iodide concentrating mechanism of the thyroid gland, Am.J.Physiol. 194: 28 (1958).Google Scholar
  35. 35.
    J. Wolff, I.L. Chaikoff, R.C. Goldberg, J.R. Meier, The temporary nature of the inhibitory action of excess iodide on organic iodine synthesis in the normal thyroid, Endocrinol. 45: 504 (1949).Google Scholar
  36. 36.
    L.W. Braverman, S.H. Ingbar, Changes in thyroidal function during adaptation to large doses of iodide, J.Clin.Invest. 42: 1216 (1963).Google Scholar
  37. 37.
    E.F. Grollman, A. Smolar, A. Ommaya, D. Tombaccini, P. Santisteban, Iodine suppression of iodide uptake in FRTL-5 thyroid cells, Endocrinol. 118: 2477 (1986).Google Scholar
  38. 38.
    J.R. Sherwin, W. Tong, The action of iodide and TSH on thyroid cells showing a dual control system for the iodide pump, Endocrinol. 94: 1465 (1974).Google Scholar
  39. 39.
    G.D. Chazenbalk, M.A. Pisarev, L. Kraviec, G.J. Juvenal, G. Burton, and R.M. Valsecchi, In vitro inhibitory effects of an iodinated derivative of arachidonic acid on calf thyroid, Acta.Physiol.Pharmacol. Latino Am. 34:367 (1984).Google Scholar
  40. 40.
    G.P. Becks, M.C. Eggo and G.N. Burrow, Regulation of differentiated thyroid function by iodide: preferential inhibitory effect of excess iodide on thyroid hormone secretion, Endocrinol. 120: 2569 (1987).Google Scholar
  41. 41.
    J. Van Sande, P. Cochaux, and J.E. Dumont, Further characterization of the iodide inhibitory effect on the cAMP system in dog thyroid slices, Mol.Cell Endocrinol. 40: 181 (1985).Google Scholar
  42. 42.
    S. Filletti, B. Rapoport, Evidence that organic iodine attenuates the cAMP response to TSH stimulation by an action at or near the adenylate cyclase catalytic unit, Endocrinol. 113: 1608 (1983).Google Scholar
  43. 43.
    J. Wolff, Physiological aspects of iodide excess in relation to radiation protection, J.Mol.Med. 4: 151 (1980).Google Scholar
  44. 44.
    N.E. Heldin, F.A. Karlsson, B. Westermark, A growth stimulatory effect of iodide, Endocrinol. 121: 757 (1987).Google Scholar
  45. 45.
    R. Gartner, W. Greil, R. Demharter, K. Horn, Involvement of cAMP, I- and metabolites of arachidonic acid in the regulation of cell proliferation of isolated porcine thyroid follicles, Mol.Cell.Endocrinol. 42: 145 (1985).Google Scholar
  46. 46.
    G.P. Becks, M.C. Eggo, G.N. Burrow, Organic Iodine inhibits DNA synthesis and growth in FRTL-5 thyroid cells, Endocrinol. 123: 545 (1988).Google Scholar
  47. 47.
    L.J. Valenta, Effect of iodide and TSH on in vitro 14C-amino acid incorporation into rat thyroid protein, Acta Endocrinol. 76: 273 (1974).Google Scholar
  48. 48.
    S. Filletti, B. Rapoport, Autoregulation by iodine of thyroid protein synthesis: influence of iodine on amino acid transport in cultured thyroid cells, Endocrinol. 114: 1379 (1984).Google Scholar
  49. 49.
    K. Hashizume, M. Kobayashi, T. Onaya, Iodide modulation of Ca2+ efflux from mouse thyroid, Endocrinol.Japon. 32: 259 (1985).CrossRefGoogle Scholar
  50. 50.
    N. Takasu, Y. Handa, A. Kawaoi, Y. Shimizu, T. Yamada, Effects of iodide on thyroid follicle structure and electrophysiological potentials in cultured thyroid cells, Endocrinol. 117: 71 (1985).Google Scholar
  51. 51.
    J. M. Boeynaems, N. Galand, J.E. Dumont, Inhibition by iodide of the cholinergic stimulation of prostaglandin synthesis in dog thyroid, Endocrinol. 105: 996 (1979).Google Scholar
  52. 52.
    J.M. Boeynaems, D. Pelster, J.A. Oates, W.C. Hubbard, Novel transformations of arachidonic acid by the rat thyroid in vitro, Biochim.Biophys.Acta 665: 623 (1981).CrossRefGoogle Scholar
  53. 53.
    A. Takeuchi, J. Mockel, Mechanism of increased phosphatidyl inositol turnover in dog thyroid slices in vitro, Ann.d’Endocrinol. 44: 54A (1983).Google Scholar
  54. 54.
    B. Rousset, J. Wolff, Lactoperoxidase-tubulin interactions, J.Biol.Chem. 255: 2514 (1980).Google Scholar
  55. 55.
    H. Jenzer, U. Burgi, H. Kohler, Irreversible inactivation of lactoperoxidase in the course of iodide oxidation, Biochem.Biophys.Res.Commun. 142: 552 (1987).CrossRefGoogle Scholar
  56. 56.
    L.J. Valenta, W.C. Florsheim, B.S. Sharma, Acute effects of iodide on the stimulated rat thyroid, Endocrinol. 111: 1721 (1982)Google Scholar
  57. 57.
    N.E. Heldin, F.A. Karlsson, B. Westermark, Inhibition of cAMP formation by iodide in suspension cultures of porcine thyroid follicle cells, Mol.Cell.Endocrinol. 41: 61 (1985).Google Scholar
  58. 58.
    J.R. Sherwin, D.J. Price, Autoregulation of thyroid iodide transport: evidence for the mediation of protein synthesis -iodide-induced suppression of iodide transport, Endocrinol. 119: 2553 (1986).Google Scholar
  59. 59.
    P. Santisteban, A.J. Hargreaves, J. Cano, J. Avila, L. Lamas, Effects of high doses of iodide on thyroid secretion: evidence for the presence of iodinated membrane tubulin, Endocrinol. 117: 607 (1985)Google Scholar
  60. 60.
    B. Bhattacharyya, J. Wolff, Membrane-bound tubulin in brain and thyroid tissue, J.Biol.Chem. 250: 7639 (1975).Google Scholar
  61. 61.
    N. Bagchi, T. Brown, B. Shivers, R.E. Mack, Effect of inorganic iodide on thyroglobulin hydrolysis in cultured cells, Endocrinol. 100: 1002 (1977).Google Scholar
  62. 62.
    C.S. Ahn, I.N. Rosenberg, Proteolytic activity in the rat thyroid gland, Endocrinol. 81: 1319 (1967).Google Scholar
  63. 63.
    R.L. Peake, K. Balasubramaniam, W.P. Deiss, Effect of reduced glutathione on the proteolysis of intraparticulate and native thyroglobulin, Biochim.Biophys.Acta 148: 689 (1967).CrossRefGoogle Scholar
  64. 64.
    W. Vanderlaan, R. Caplan, Observations of a relationship between total thyroid iodine content and the iodide-concentrating mechanism of the thyroid gland in the rat, Endocrinol. 54: 437 (1954).Google Scholar
  65. 65.
    N.S. Halmi, R.G. Stuelke, Problems of thyroidal self regulation, Metabolism 5: 646 (1956).Google Scholar
  66. 66.
    P. Cochaux, J. Van Sande, S. Swillens, J.E. Dumont, Iodide-induced inhibition of adenylate cyclase activity in horse and dog thyroid, Eur.J. Biochem. 170:435 (1987).Google Scholar
  67. 67.
    E.L. Socolow, D. Dunlap, R.A. Sobel, S.H. Ingbar, A correlative study of the effect of I- administration on thyroidal I- transport and organic iodine content, Endocrinol. 83: 737 (1968).Google Scholar
  68. 68.
    S. Lissitzky, J. Gregoire, J. Gregoire, N. Limozin, The presence and in vitro activity of free iodinated peptides in the thyroid gland of mammals and man, Gen.Comp.Endocrinol. 1: 519 (1961).Google Scholar
  69. 69.
    J.F. Haney, S. Lissitzky, A study of the dialysable iodo-compounds of rat thyroid gland, Gen.Comp.Endocrinol. 3: 139 (1963).CrossRefGoogle Scholar
  70. 70.
    D.J. Price, J.R. Sherwin, Autoregulation of iodide transport in the rodent: absence of autoregulation in fetal tissue and comparison of material and fetal iodination products, Endocrinol. 119: 2547 (1986).Google Scholar
  71. 71.
    P. Vilkki, An iodide complexing phospholipid, Arch.Biochem.Biophys. 97: 425 (1962).CrossRefGoogle Scholar
  72. 72.
    P.B. Schneider, J. Wolff, Thyroidal Iodide Transport VI. On a possible role for iodide-binding phospholipids, Biochim.Biophys.Acta 94: 114 (1965).CrossRefGoogle Scholar
  73. 73.
    G.L. Jendrasiak, Halide interaction with phospholipids -proton magnetic resonance studies, Chem.Phys.Lipids 9: 133 (1972).CrossRefGoogle Scholar
  74. 74.
    P. Vilkki, I. Jaakonmaki, Role of fatty acids in iodide-complexing lecithin, Endocrinol. 78: 453 (1966).Google Scholar
  75. 75.
    G.M. Levis, J.N. Karli, B. Malamos, The phospholipids of the thyroid gland, Clin.Chem.Acta 41: 335 (1971).CrossRefGoogle Scholar
  76. 76.
    G. Van Dessel, A. Lagrou, H.J. Hilderson, W. Dierick, G. Dacremont, Quantitative determination of the neutral glycosyl ceramides in bovine thyroid gland, Biochimie 59: 839 (1977).Google Scholar
  77. 77.
    M. Iwamori, K. Sawada, Y. Hara, M. Nishio, T. Fujisawa, H. Imura, Y. Nagai, Neutral glycosphingolipids and gangliosides of bovine thyroid, J.Biochem. (Tokyo) 91: 1875 (1982).Google Scholar
  78. 78.
    B. Bouchon, J. Portoukalian, H. Bornet, Major gangliosides in normal and pathological human thyroids, Biochem.Int. 10: 531 (1985).Google Scholar
  79. 79.
    G.A.F. Van Dessel, A.R. Lagrou, 1. Hilderson, W. Dierick, W. Lauwers, Structure of major gangliosides from bovine thyroid, J.Biol.Chem. 254: 9305 (1979).Google Scholar
  80. 80.
    J. Wolff, Iodide transport, anion selectivity and the iodide “trap”, in: “Diminished Thyroid Hormone Formation”, D. Reinwein, E. Klein, eds., F.K. Schattauer, Stuttgart 3 (1982).Google Scholar
  81. 81.
    E.M. Wright, J.M. Diamond, Anion selectivity in biological systems, Physiol.Rev. 57: 109 (1977).Google Scholar
  82. 82.
    D. Reichenberg, Ion exchange selectivity, in: “Ion Exchange -A Series of Advances”, Vol 1, J.A. Marinsky, ed., Marcel Dekker, NY 227 (1966).Google Scholar
  83. 83.
    I. Chatterjee, P. Nandy, B.B. Bhowmik, Nature of the interaction of phospholipid liposomes with iodine, Chem.Phys.Lipids 49: 57 (1988).CrossRefGoogle Scholar
  84. 84.
    G.L. Jendrasiak, NMR study of molecular interactions with phosphatidyl choline, Chem.Phys.Lipids 6: 215 (1971).CrossRefGoogle Scholar
  85. 85.
    H.C. Yohe, A. Rosenberg, Interaction of triiodide anion with gangliosides in aqueous iodine, Chem.Phys.Lipids 9: 279 (1972).CrossRefGoogle Scholar
  86. 86.
    G. Jendrasiak, R. Hayes, Spin-label study of the iodine-lecithin interaction, Nature 225: 278 (1970).Google Scholar
  87. 87.
    A. Finkelstein, A. Cass, Permeability and electrical properties of thin lipid membranes, J.Gen.Physiol. 52:Suppl 145 (1968).Google Scholar
  88. 88.
    B. Rosenberg, G. Jendrasiak, Semiconductive properties of lipids and their possible relationship to lipid bilayer conductivity, Chem.Phys.Lipids 2: 47 (1968).Google Scholar
  89. 89.
    G. Jendrasiak, M. Mangel, Ion-pair movement across bilayer lipid membranes, Nature 234: 89 (1971).Google Scholar
  90. 90.
    T.I. Shaw, The mechanism of iodide accumulation by the brown seaweed Lauminaria digitata, Proc.Roy.Soc.B. 150:336 (1959).Google Scholar
  91. 91.
    H. Klemperer, The accumulation of iodide by Fucus ceranoides, Biochem.J. 67:381 (1957).Google Scholar
  92. 92.
    J. Wolff, Thyroid Iodide Transport I. Cardiac Glycosides and the Role of Potassium, Biochim.Biophys.Acta 38: 316 (1960).CrossRefGoogle Scholar
  93. 93.
    A. Lagrou, W. Dierick, A. Christophe, G. Verdonk, Lipid composition of normal and hypertrophic bovine thyroids, Lipids 9: 870 (1974).Google Scholar
  94. 94.
    L.A. Lipshaw, P.P. Foa, The composition and possible physiologic role of the thyroid lipids, Adv.Lipid Res. 12: 227 (1974).Google Scholar
  95. 95.
    D.H. Shah, R.C. Shownkeen, V.R. Thakare, Iodinated thyrolipids, Acta Endocrinol. 70: 683 (1972).Google Scholar
  96. 96.
    J.L. Rabinowitz, M. Zanger, V. Podolski, Identification by NMR of iodinated lipids in the dog thyroid, Biochem.Biophys.Res.Commun. 68: 1161 (1976).CrossRefGoogle Scholar
  97. 97.
    L. Svennerholm, Gangliosides of human thyroid gland, BBA 835: 231 (1985).PubMedCrossRefGoogle Scholar
  98. 98.
    G.M. Levis, D.A. Koutras, A. Vagenakis, G. Messaris, C. Miras, B. Malamos, Thyroidal iodinated compounds in nodular goiter, Clin.Chim.Acta 20: 127 (1968).CrossRefGoogle Scholar
  99. 99.
    F. Beguinot, L. Beguinot, D. Tramontano, C. Duilio, S. Formisano,M. Bifulco, F.S. Ambesi, S.M. Aloj, TSH regulation of membrane lipid fluidity in the FRTL-5 thyroid cell line, J.Biol.Chem. 262: 1575 (1987).Google Scholar
  100. 100.
    H. Depauw, M. De Wolf, G. Van Dessel, H. Hilderson, A. Lagrou, W. Dierick, Modification of TSH-stimulated adenylate cyclase activity of bovine thyroid by manipulation of membrane phospholipid, Biochim.Biophys.Acta 937: 359 (1988).CrossRefGoogle Scholar
  101. 101.
    T.W. Scott, V. Trikojus, Interactions of phospholipids with thyroglobulin and their influence on the enzyme hydrolysis of this protein, Biochem.Biophys.Acta 215: 477 (1970).Google Scholar
  102. 102.
    B. Haye, C. Jacquemin, Incorporation of [14C]arachidonic acid in pig thyroid lipids and prostaglandins, Biochim.Biophys.Acta 487: 231 (1977).Google Scholar
  103. 103.
    S.L. Neidleman, J. Geigert, Biohalogenation: principles, basic roles and applications, John Wiley and Sons, NY (1986).Google Scholar
  104. 104.
    A. Bennenson, M. Mersel, A. Pinson, M. Heller, Enzymatic radioiodination of phospholipids catalyzed by lactoperoxidase, Anal.Biochem. 101: 507 (1980).Google Scholar
  105. 105.
    T.D. Butters, R.C. Hughes, Surface labeling of human KB cells, Biochem.J. 150: 59 (1975).Google Scholar
  106. 106.
    M. Mersel, A. Bennenson, F. Doljanski, Lactoperoxidase-catalyzed iodination of surface membrane lipids, Biochem.Biophys.Res.Commun. 70: 1166 (1976).CrossRefGoogle Scholar
  107. 107.
    J.F. Poduslo, P.E. Brown, Topographical arrangement of membrane proteins in the intact myelin sheath, J.Biol.Chem. 250: 1099 (1975).Google Scholar
  108. 108.
    S.I. Schlager, Specific 125I-iodination of cell surface lipids: plasma membrane alterations induced during humoral immune attack, J. Immunol. 123:2108 (1979).Google Scholar
  109. 109.
    B. Rousset, C. Poncet, J.E. Dumont, R. Mornex, Intracellular and extracellular sites of iodination in dispersed hog thyroid cells, Biochem.J. 192: 801 (1980).Google Scholar
  110. 110.
    A. Taurog, W. Tong, I. Chaikoff, An unidentified iodine compound formed by incubation of cell-free preparations of tissue with 131I, J.Biol.Chem. 227: 759 (1957).Google Scholar
  111. 111.
    I. Posner, L. Ordonez, Lipid-iodine association in the rat thyroid gland, Biochim.Biophys.Acta 187: 588 (1969).CrossRefGoogle Scholar
  112. 112.
    D.H. Shah, V.R. Thakare, R.C. Shownkeen, D.N. Pahuja, M.Y. Mandlik, Iodinated thyrolipids: their possible role in hormonogenesis, Acta Endocrinol. 74: 461 (1973).Google Scholar
  113. 113.
    G.D. Chazenbalk, M.A. Pisarev, G.J. Juvenal, D.L. Kleiman de Pisarev, H. Mercuri, M. DeTomas, Biosynthesis and regulation of iodolipids in calf thyroid, Acta Endocrinol. 108: 72 (1985).Google Scholar
  114. 114.
    B.R. Mullin, T. Pacuszka, G. Lee, L.D. Kohn, R.O. Brady, P.H. Fishman, Thyroid gangliosides with high affinity for TSH, Science 199: 77 (1978).Google Scholar
  115. 115.
    G.A.F. Van Dessel, A. Lagrou, H. Hilderson, W. Dierick, W. Lauwers, Structure of the major gangliosides from bovine thyroid, J.Biol.Chem. 254: 9305 (1979).Google Scholar
  116. 116.
    J.L. Rabinowitz, C.J. Tavares, Iodinated phospholipids and the in vitro iodination of proteins of dog thyroid gland, Biochem.J. 168:155 (1972).Google Scholar
  117. 117.
    N. Sonntag, Halogenation, dehalogenation, and dehydrohalogenation, in: “Fatty Acids, Part 2”, K.S. Markley, ed., Interscience Publ., NY 1073 (1961).Google Scholar
  118. 118.
    B.C. Saunders, B.P. Stark, Studies on peroxidase action XII: transiodination and related processes, Tetrahedron 4: 169 (1958).Google Scholar
  119. 119.
    M.A. Johnson, R. Croteau, Biosynthesis of ascaridole: iodide peroxidase-catalyzed synthesis of a monoterpene endoperoxide in soluble extracts of chenopodium ambrosioides, Arch.Biochem.Biophys. 235:254 (1984).Google Scholar
  120. 120.
    J. Boeynaems, W. Hubbard, Transformation of arachidonic acid into an iodolactone by the rat thyroid, J.Biol.Chem. 255: 9001 (1980).Google Scholar
  121. 121.
    J. Boeynaems, D. Reagan, W. Hubbard, Lactoperoxidase-catalyzed iodination of arachidonic acid: formation of macrolides, Lipids 16: 246 (1981).Google Scholar
  122. 122.
    J. Boeynaems, J. Watson, J. Oates, W. Hubbard, Iodination of docosahexaenoic acid by lactoperoxidase and thyroid gland in vitro: formation of an iodolactone, Lipids 16: 323 (1987).Google Scholar
  123. 123.
    P. DeLaMare, Electrophilic Halogenation, Cambridge Univ Press, Cambridge 171 (1976).Google Scholar
  124. 124.
    J. Turk, W. Henderson, S. Klebanoff, W. Hubbard, Iodination of arachidonic acid mediated by eosinophil peroxidase, myeloperoxidase and lactoperoxidase, Biochim.Biophys.Acta 751: 189 (1983).CrossRefGoogle Scholar
  125. 125.
    B. Haye, S. Champion, C. Jacquemin, Control by TSH of phospholipase A2 activity: a limiting factor in the biosynthesis of prostaglandins in the thyroid, FEBS Lett. 30: 253 (1973).Google Scholar
  126. 126.
    B. Haye, S. Champion, C. Jacquemin, Existence of two pools of prostaglandins during stimulation of the thyroid by TSH, FEBS Lett. 41: 89 (1974).Google Scholar
  127. 127.
    Y. Igarashi, Y. Kondo, Acute effects of TSH on phosphatidyl inositol degradation and transient accumulation of diacyl glycerol in isolated thyroid follicles, Biochem.Biophys.Res.Commun. 97: 759 (1980).Google Scholar
  128. 128.
    Y. Igarashi, Y. Kondo, Characterization of partial glyceride specific lipases in pig thyroid plasma membranes, Biochem.Biophys.Res.Commun. 97: 766 (1980).CrossRefGoogle Scholar
  129. 129.
    G. Chazenbalk, M. Pisarev, L. Krawiec, G. Juvenal, G. Burton, R. Valsecchi, In vitro inhibitory effects of an iodinated derivative of arachidonic acid on calf thyroid, Acta Physiol. Pharmacol. Latino Am. 34:367 (1984).Google Scholar
  130. 130.
    M. Pisarev, G. Chazenbalk, L. Krawiec, C. Juvenal, R. Valsecchi, G. Burton, Effects of purified iodolipids on thyroid function in vitro, Proc. 9th Int’l Congress abstract 225 (1985).Google Scholar
  131. 131.
    L. Krawiec, G. Chazenbalk, S. Puntarulo, G. Burton, A. Boveris, R. Valsecchi, M. Pisarev, The inhibition of PB125I formation in calf thyroid caused by 14-iodo-15-hydroxy-5,8,11-eicosatrienoic acid is due to decreased H202 production, Horm.Metab.Res. 20: 86 (1988).Google Scholar
  132. 132.
    G. Chazenbalk, R. Valsecchi, L. Krawiec, G. Burton, G.J. Juvenal, E. Monteagudo, H. Chester, M. Pisarev, Thyroid autoregulation inhibitory effects of iodinated derivatives of arachidonic acid on iodine metabolism, Prostaglandins 36: 163 (1988).Google Scholar
  133. 133.
    M. Pisarev, G. Burton, P. Grawitz, G. Chazenbalk, G. Juvenal, D. Kleiman de Pisarev, L. Krawiec, R. Valsecchi, Post-receptor events in growth control, in: “Frontiers in Thyroidology”, G. Medeiros-Neto, E. Gaitan, eds., 125 (1986).Google Scholar
  134. 134.
    W.V. Moore, J. Wolff, Binding of prostaglandin E1 to beef thyroid membranes, J.Biol.Chem. 248: 5705 (1973).Google Scholar
  135. 135.
    E.J. Goetzl, The conversion of leukotriene C4 to isomers of leukotriene B4 by human eosinophil peroxidase, Biochem.Biophys.Res.Commun. 106: 270 (1982).CrossRefGoogle Scholar
  136. 136.
    W.R. Henderson, A. Jorg, S. Klebanoff, Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4 and D4, J. Immunol. 128:2609 (1982).Google Scholar
  137. 137.
    J-M. Paredes, S. Weiss, Human neutrophils transform prostaglandins by a myeloperoxidase dependent mechanism, J.Biol.Chem. 257: 2738 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. Wolff
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations