Regulatory Peptides in the Thyroid Gland

  • Torsten Grunditz
  • Frank Sundler
  • Rolf Håkanson
  • Rolf Uddman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 261)


The mammalian thyroid gland harbours two different endocrine cell types: follicular and parafollicular (C) cells. The follicle cells are of entodermal origin and develop from the thyroglossus duct in the floor of the pharyngeal cavity(1,2). The C cells are thought to derive from the neuroectoderm(3). The C cell precursors migrate to form the ultimobranchial bodies which persist as separate organs throughout life, in submammalian vertebrates(4,5). In mammals the ultimobranchial bodies fuse with the thyroid anlage during the fetal development (6–8). The follicle cells synthesize and secrete triiodothyronine (T3) and tetraiodothyronine or thyroxine (T4), which control energy metabolism and are necessary for normal growth(9). The C cells synthesize, store and secrete calcitonin (CT), which is thought to he involved in the regulation of serum Ca by suppressing bone resorption(10,11).


Thyroid Gland Vasoactive Intestinal Peptide Follicle Cell Regulatory Peptide Superior Cervical Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Boyd, Development of the human thyroid gland, in: “The Thyroid Gland, Vol 1”, R. Pitt-Rivers and W. R. Trotter, eds., Butterworths, London (1964).Google Scholar
  2. 2.
    R. Ekholm, Thyroid physiology: Anatomy and development, in: “Endocrinology, Vol 1”, L. J. DeGroot, ed., Grune and Stratton, New York (1979).Google Scholar
  3. 3.
    N. Le Douarin, “The Neural Crest”. Cambridge University Press, Cambridge (1982).Google Scholar
  4. 4.
    J. M. Polak, A. G. E. Pearse, C. Le Liévre, J. Fontaine, and N. Le Douarin, Immunocytochemical confirmation of the neuronal crest origin of avian calcitonin-producing cells, Histochemistry 40: 209 (1974).PubMedGoogle Scholar
  5. 5.
    N. Le Douarin, J. Fontaine, and C. Le Lievre, New studies on the neural crest origin of the avian ultimobranchial glandular cells - Interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors, Histochemistry 38: 297 (1974).PubMedGoogle Scholar
  6. 6.
    A. G. E. Pearse, and A. F. Carvalheira, Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells, Nature 214: 929 (1967).PubMedGoogle Scholar
  7. 7.
    A. G. E. Pearse, and J. M. Polak, Cytochemical evidence for the neural crest origin of mammalian ultimobranchial C cells, Histochemie 27: 96 (1971).PubMedGoogle Scholar
  8. 8.
    A. G. E. Pearse, The diffuse neuroendocrine system: Falsification and verification of a concept, in: “Cellular Basis of Chemical Messengers in the Digestive System”, M. I. Grossman, M. A. B. Brazier and J. Lechago, eds., Academic Press, New York (1981).Google Scholar
  9. 9.
    L. J. DeGroot, and H. Niepomniszcze, Biosynthesis of thyroid hormone: Basic and clinical aspects, Metabolism 26: 665 (1977).PubMedGoogle Scholar
  10. 10.
    A. D. Care, and R. F. L. Bates, The secretion of parathyroid hormone and calcitonin, Hormones 1: 364 (1970).PubMedGoogle Scholar
  11. 11.
    D. H. Copp, Endocrine regulation of calcium metabolism, Ann Rev Physiol 32: 61 (1970).Google Scholar
  12. 12.
    W. J. Cunliffe, The innervation of the thyroid gland, Acta Anat 46: 135 (1961).PubMedGoogle Scholar
  13. 13.
    J. F. Nonidez, Innervation of the thyroid gland. I. The presence of ganglia in the thyroid of the dog, Arch Neurol Phychiat (Chicago) 25: 1175 (1931).Google Scholar
  14. 14.
    J. F. Nonidez, Innervation of the thyroid gland. III. Distribution and termination of the nerve fibers in the dog, Am J Anat 57: 135 (1935).Google Scholar
  15. 15.
    S. L. Wissig, Morphology and cytology, in: “The Thyroid Gland, Vol 1”, R. Pitt-Rivers and W. R. Trotter, eds., Butterworths, London (1964).Google Scholar
  16. 16.
    H. Fujita, Fine structure of the thyroid follicle, in: “Ultrastructure of Endocrine Cells and Tissues”, P. M. Motta, ed., Martinus Nijhoff Publ, Boston (1984).Google Scholar
  17. 17.
    R. Ekholm, and L. E. Ericson, The ultrastructure of the parafollicular cells of the thyroid gland in the rat, J Ultrastruct Res 23: 378 (1968).PubMedGoogle Scholar
  18. 18.
    L. E. Ericson, and F. Sundler, Thyroid parafollicular cells: Ultrastructural and functional correlations, in: “Ultrastrucure of Endocrine Cells and Tissues”, P. M. Motta, ed., Martinus Nijhoff Publ, Boston (1984).Google Scholar
  19. 19.
    S. Reichlin, Regulation of pituitary thyrotropin release, in: “Thyrotropin”, S. C. Werner, ed., Thomas, Springfield, Illinois (1963).Google Scholar
  20. 20.
    L. E. Ericson, and B. R. Johansson, Early effects of thyroid stimulating hormone (TSH) on exocytosis and endocytosis in the thyroid, Acta Endocrinol (Copenh) 86: 112 (1977).Google Scholar
  21. 21.
    J. E. Dumont, and G. Vassart, Thyroid gland metabolism and the action of TSH, in: “Endocrinology, Vol 1”, L. J. DeGroot, ed., Grune and Stratton, New York. 1979Google Scholar
  22. 22.
    S. T. Green, Intrathyroidal autonomic nerves can directly influence hormone release from rat thyroid follicles: a study in vitro employing electrical field stimulation and intracellular microelectrodes, Cli Sci 72: 233 (1987).Google Scholar
  23. 23.
    T. Grunditz, R. Hâkanson, F. Sundler, and R. Uddman, Neuronal pathways to the rat thyroid gland revealed by retrograde tracing and immunocytochemistry, Neuroscience 24: 321 (1988).PubMedGoogle Scholar
  24. 24.
    A. Melander, L. E. Ericsson, F. Sundler, and U. Westgren, Intrathyroidal amines in the regulation of thyroid activity, Rev Physiol Biochem Pharmacol 73: 39 (1975).PubMedGoogle Scholar
  25. 25.
    A. Melander, and F. Sundler, Prescence and influence of cholinergic nerves in the mouse thyroid, Endocrinology 105: 7 (1979).PubMedGoogle Scholar
  26. 26.
    A. Melander, F. Sundler, and U. Westgren, Sympathetic innervation of the thyroid: Variation with species and with age, Endocrinology 96: 102 (1975).PubMedGoogle Scholar
  27. 27.
    T. Grunditz, R. Hâkanson, C. Rerup, F. Sundler, and R. Uddman, Neuropeptide Y in the thyroid gland: Neuronal localization and enhancement of stimulated thyroid hormone secretion, Endocrinology 115: 1537 (1984).PubMedGoogle Scholar
  28. 28.
    J. F. Nonidez, Innervation of the thyroid gland. II. Origin and course of the thyroid nerves in the dog, Am J Anat 48: 299 (1931).Google Scholar
  29. 29.
    H. Holmgren, and B. Naumann, A study of the nerves of the thyroid gland and their relationship to glandular function, Acta Endocrinol (Copenh) 3: 215 (1949).Google Scholar
  30. 30.
    U. Söderberg, Short term reactions in the thyroid gland, Acta Physiol Scand, Suppl 147, 42 (1958).Google Scholar
  31. 31.
    Y. Mikhail, Intrinsic nerve supply of the thyroid and parathyroid glands, Acta Anat (Basel) 80: 152 (1971).Google Scholar
  32. 32.
    H. E. Romeo, C. Gonzales-Solveyra, M. I. Vacas, R. E. Rosenstein, M. Barontini, and D. P. Cardinali, Origins of the sympathetic projections to the rat thyroid and parathyroid glands, J Auton Nery Syst 17: 63 (1986).Google Scholar
  33. 33.
    M. L. Maayan, A. F. Debons, E. M. Volpert, and I. Krimsky, Catecholamine inhibition of thyrotrophin-induced secretion of thyroxine: Mediation by an a-adrenergic receptor, Metabolism 26: 473 (1977).PubMedGoogle Scholar
  34. 34.
    T. Muraki, H. Uzumaki, T. Nakadate, and R. Kato, Involvement of a -adrenergic receptors in the inhibitory effect of catecholamines on the thyrotropin-induced release of thyroxine by the mouse thyroid, Endocrinology 110: 51 (1982).PubMedGoogle Scholar
  35. 35.
    H. E. Romeo, R. J. Boado, and D. P. Cardinali, Role of the sympathetic nervous system in the control of thyroid growth of normal and hypophysectomized rats, Neuroendocrinology 40: 309 (1985).PubMedGoogle Scholar
  36. 36.
    H. H. Dale, Nomenclature of fibers in the autonomic system and their effects, J Physiol (Land) 80: 10, (1933).Google Scholar
  37. 37.
    F. Amenta, D. Caporuscio, F. Ferrante, F. Porcelli, and Zomparelli, M., Cholinergic nerves in the thyroid gland, Cell Tissue Res 195: 367 (1978).PubMedGoogle Scholar
  38. 38.
    A. Silver, Do cholinesterases have a function other than in transmission? in: “The biology of cholinesterases”, A. Silver, ed., North-Holland Publ., Amsterdam (1974).Google Scholar
  39. 39.
    N. Cauna, and N. T. Naik, The distribution of cholinesterases in the sensory ganglia of man and of some mammals, J Histochem Cytochem 11: 129, (1963).Google Scholar
  40. 40.
    O. Eränkö, and M. Härkönen, Noradrenaline and acetylesterase in sympathetic ganglion cells in the rat, Acta Physiol Scand 61: 299 (1964).Google Scholar
  41. 41.
    J. Ishii, K. Shizume, and S. Okinaka, Effect of stimulationlof the vagus nerve on the thyroidal release of I-labeled hormones, Endocrinology 82: 7 (1968).PubMedGoogle Scholar
  42. 42.
    J. Sande, C. Erneux, and J. Dumont, Negative control of TSH action by iodide and acetylcholine: mechanism of action in intact thyroid cells, J Cyclic Nucleotice Res 3: 335 (1977).Google Scholar
  43. 43.
    J. Van Sande, J. E. Dumont, A. Melander, and F. Sundler, Presence and influence of cholinergic nerves in the human thyroid, J Clin Endocrinol Metab 51: 500 (1980).PubMedGoogle Scholar
  44. 44.
    H. Ito, K. Matsuda, A. Sato, and H. Tohgi, Cholinergic and VlPergic vasodilator actions of parasympathetic nerves on the thyroid blood flow in rats, Jap J Physiol 37: 1005 (1987).Google Scholar
  45. 45.
    F. Lemere, Innervation of the larynx. I. Innervation of laryngeal muscles, Am J Anat 51: 417 (1932).Google Scholar
  46. 46.
    H. E. Romeo, M. C. Diaz, J. Ceppi, A. Zaninovich, and D. P. Cardinali, Effect of inferior laryngeal nerve section on thyroid function in rats, Endocrinology 122: 2527 (1988).PubMedGoogle Scholar
  47. 47.
    T. Hökfelt, O. Johansson, A. Ljungdahl, J. M. Lundberg, and M. Schultzberg, Peptidergic neurones, Nature 284: 515 (1980).PubMedGoogle Scholar
  48. 48.
    J. M. Lundberg, and T. Hökfelt, Coexistence of peptides and classical neurotransmitters, Trends Neurosci 6: 325 (1983).Google Scholar
  49. 49.
    F. Sundler, E. Ekblad, G. Böttcher, J. Alumets, and R. Hâkanson, Coexistence of peptides in the neuroendocrine system, in: “Biogenetics of neurohormonal peptides”, R. Hâkanson and J. Thorell, eds., Academic press, London (1985).Google Scholar
  50. 50.
    A. H. Coons, E. H. Leduc, and J. M. Connolly, Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit, J Exp Med 102: 49 (1955).PubMedGoogle Scholar
  51. 51.
    L. A. Sternberger, “Immunocytochemistry”, 2nd edn., Wiley, New York, (1979).Google Scholar
  52. 52.
    L- I. Larsson, Ultrastructural localization of a new neuronal peptide (VIP), Histochemistry 54: 173 (1977).PubMedGoogle Scholar
  53. 53.
    F. Sundler, R. Hâkanson, and S. Leander, Peptidergic nervous systems in the gut, Clin Gastoenterol 9: 517 (1980).Google Scholar
  54. 54.
    R. Hâkanson, S. Leander, F. Sundler, and R. Uddman, P-type nerves Purinergic or peptidergic? in: “Cellular Basis of Chemical Messengers in the Digestive System, ” M. I. Grossman, M. A. B. Brazier and J. Lechago, eds., Academic Press, New York (1981).Google Scholar
  55. 55.
    L. Probert, J. Mey, and J. M. Polak, Ultrastructural localization of four different neuropeptides within separate populations of p-type nerves in the guinea pig colon, Gastroenterology 85: 1094 (1983).PubMedGoogle Scholar
  56. 56.
    S. Gulbenkian, A. Merighi, J. Warthon, I. Varndell, and J. M. Polak, Ultrastructure evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig, J Neurocytol 15: 535 (1986).PubMedGoogle Scholar
  57. 57.
    A. Merighi, J. M. Polak, S. J. Gibson, S. Gulbenkian, K. L. Valentino, and S. M. Peirone, Ultrastructural studies on calcitonin gene-related peptide-, tachykinins-and somatostatin-immunoreactive neurones in rat dorsal root ganglia: Evidence for the colocalization of different peptides in single secretory granules, Cell Tissue Res 254: 101 (1988)PubMedGoogle Scholar
  58. 58.
    R. Hâkanson, and F. Sundler, The role of peptide messengers in the neuroendocrine system: hormones, neurotransmitters or neuromodulators? in: Drug Receptors and Dynamic processes in Cells, J. S. Schou, A. Glister and S. Norn, eds., Munkgaard, Copenhagen (1986).Google Scholar
  59. 59.
    B. Ahrén, J. Alumets, M. Ericsson, J. Fahrenkrug, L. Fahrenkrug, R. Hâkanson, P. Hedner, I. Lorén, A. Melander, C. Rerup, and F. Sundler, VIP occurs in intrathyroidal nerves and stimulates thyroid hormone secretion, Nature 287: 343 (1980).PubMedGoogle Scholar
  60. 60.
    G. A. Hedge, L. J. Huffman, T. Grunditz, and F. Sundler, Immunocytochemical studies of the peptidergic innervation of thyroid gland in the Brattleboro rat, Endocrinology 115: 2071 (1984).PubMedGoogle Scholar
  61. 61.
    T. Grunditz, R. Hâkanson, G. Hedge, C. Rerup, F. Sundler, and R. Uddman, Peptide histidine isoleucine amide stimulates thyroid hormone secretion and coexists with vasoactive intestinal polypeptide in intrathyroid nerve fibers from laryngeal ganglia, Endocrinology 118: 783 (1986).PubMedGoogle Scholar
  62. 62.
    S. T. Green, J. Singh, and O. H. Petersèn, Control of cyclic nucleotide metabolism by non-cholinergic, non-adrenergic nerves in rat thyroid gland, Nature 296: 751 (1982).PubMedGoogle Scholar
  63. 63.
    R. S. Toccafondi, M. L. Brandi, and A. Melander, Vasoactive intestinal peptide stimulation of human thyroid cell function, J Clin Endocrinol and Metab 58: 157 (1984).Google Scholar
  64. 64.
    B. Ahrén, R. Hâkanson, and C. Rerup, VIP-stimulated thyroid hormone secretion: Effects of other neuropeptides and a-or ß-adrenoceptor blockade, Acta Physiol Scand 114: 471 (1982).PubMedGoogle Scholar
  65. 65.
    M. L. Brandi, A. Tanini, and R. Toccafondi, Interaction of VlPergic and cholinergic receptors in human thyroid cell, Peptides 8: 893 (1987).PubMedGoogle Scholar
  66. 66.
    T. Grunditz, R. Ekman, R. Hâkanson, C. Rerup, F. Sundler, F. and Uddman, R., Calcitonin gene-related peptide in thyroid nerve fibers and C cells. Effects on thyroid hormone secretion and response to hypercalcemia, Endocrinology 119: 2313 (1986).PubMedGoogle Scholar
  67. 67.
    T. Grunditz, R. Hakanson, F. Sundler, and R. Uddman, Neurokinin and galanin in the thyroid gland: Neuronal localization, Endocrinology 121: 575 (1987).PubMedGoogle Scholar
  68. 68.
    T. Grunditz, R. Ekman, R. Hâkanson, F, Sundler, and R. Uddman, Neuropeptide Y and vasoactive intestinal peptide coexist in rat thyroid nerve fibers emanating from the thyroid ganglion, Regul Pept 23: 193 (1988).PubMedGoogle Scholar
  69. 69.
    B. Ahrén, T. Grunditz, R. Ekman, R. Hâkanson, F. Sundler, F. and Uddman, R., Neuropeptides in the thyroid gland: Distribution of substance P and gastrin/cholecystokinin and their effects on the secretion of iodothyronine and calcitonin, Endocrinology 113: 379 (1983).PubMedGoogle Scholar
  70. 70.
    F. Sundler, and R. Hâkanson, Peptide hormone-producing endocrine/paracrine cells in the gastroentero-pancreatic region, in: “Handbook of Chemical Neuroanatomy. Vol 6: The peripheral Nervous System”, A. Björklund, T. Hökfelt and C. Owman, eds., Elsevier Sci. Publ., Amsterdam (1988).Google Scholar
  71. 71.
    G. Tramu, A. Pillez, and J. Leonardelli, An efficient method of antibody elution for the successive or simultaneous localiation of two antigens by immunocytochemistry, J Histochem Cytochem 26: 322 (1978).PubMedGoogle Scholar
  72. 72.
    J. B. Furness, M. Costa, and J. R. Keast, Choline acetyltransferase-and peptide immunoreactivity of submucous neurons in the small intestine of the guinea-pig, Cell Tissue Res 237: 329 (1984).PubMedGoogle Scholar
  73. 73.
    N. Itoh, K. Obata, N. Yanaihara, and H. Okamoto, Human prepro-vasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27, Nature 304: 547 (1983).PubMedGoogle Scholar
  74. 74.
    H. Nawa, T. Hirose, H. Takashima, S. Inayama, and S. Nakanishi, Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor, Nature 306: 32 (1983).PubMedGoogle Scholar
  75. 75.
    T. Hökfelt, V. Holets, W. Staines, B. Meister, T. Melander, M. Schalling, M. Schultzberg, J. Freedman, H. Björklund, L. Olson, B. Lindh, L-G. Elfvin, J. M. Lundberg, J. A. Lindgren, B. Samuelsson, B. Pernow, L. Terenius, C. Post, B. Everitt, and M. Goldstein, Coexistence of neuronal messengers - an overview, in: Coexistence of Neuronal Messengers: A New Principle in Chemical Transmission, T. Hökfelt, K. Fuxe and B. Pernow, eds., Elsevier, Amsterdam (1986).Google Scholar
  76. 76.
    F. Sundler, E. Ekblad, T. Grunditz, R. Hâkanson, A. Luts, and R. Uddman, NPY in peripheral non-adrenergic neurons, in: “Nobel Symposium XIV: Neuropeptide Y”, V. Mutt, T. Hökfelt and K. Fuxe, eds., Raven Press, USA, in press (1989).Google Scholar
  77. 77.
    R. Hâkanson, and F. Sundler, The design of the neuroendocrine system: a unifying concept and its consequences, Trends Pharmacol Sci 4: 41 (1983).Google Scholar
  78. 78.
    T. Hökfelt, G. Fried, S. Hansen, V. Holets, J. M. Lundberg, and L. Skirboll, Neurons with multiple messengers - distribution and possible functional significance, Progr Brain Res, 65: 115 (1986)Google Scholar
  79. 79.
    R. A. Rush, and L. B. Geffen, Dopamine-ß-hydroxylase in health and disease, CRC Crit Rev Clin Lab Sci (1980).Google Scholar
  80. 80.
    L. Edvinsson, E. Ekblad, R. Hâkanson, and C. Wahlestedt, Neuropeptide Y potentiates the effect of various vasoconstrictor agents on rabbit blood vessels, Br J Pharmacol 83: 519 (1984).PubMedGoogle Scholar
  81. 81.
    E. Ekblad, L. Edvinsson, C. Wahlestedt, R. Uddman, R. Hâkanson, and F. Sundler, Neuropeptide Y coexists and co-operates with noradrenaline in perivascular nerve fibers, Requl Pept 8: 225 (1984)Google Scholar
  82. 82.
    F. Sundler, R. Hâkanson, E. Ekblad, R. Uddman, and C. Wahlestedt, Neuropeptide Y in the peripheral adrenergic and enteric nervous systems, Int Rev Cytol 102: 243 (1986).PubMedGoogle Scholar
  83. 83.
    C. Wahlestedt, L. Edvinsson, E. Ekblad, and R. Hâkanson, Neuropeptide Y potentiates noradrenaline-evoked vasoconstriction: mode of action. J Pharm Exp Ther 234: 735 (1985).Google Scholar
  84. 84.
    T. M. Jessell, L. L. Iversen, and A. C. Cuello, Capsaicin-induced depletion of substance P from primary sensory neurones, Brain Res 152: 183 (1978).PubMedGoogle Scholar
  85. 85.
    R. Gamse, P. Holzer, and F. Lembeck, Decrease of substance P in primary afferent neurones and impairment of neurogenic plasma extravasation by capsaicin, Br J Pharmacol 68: 207 (1980).PubMedGoogle Scholar
  86. 86.
    A. Saria, R. Gamse, J. M. Lundberg, T. Hökfelt, E. Thedorsson-Norheim, J. Petermann, and J. A. Fischer, Co-existence of tachykinins and calcitonin gene-related peptide in sensory nerves in relation to neurogenic inflammation, in: “Tachykinin Antagonists”, Fernström Symp Series, R. Hâkanson and F. Sundler, eds., Elsevier, Amsterdam (1985).Google Scholar
  87. 87.
    F. Sundler, E. Brodin, E. Ekblad, R. Hâkanson, and R. Uddman, Sensory nerve fibers: Distribution of substance P, neurokinin A and calcitonin gene-related peptide, in: “Tachykinin Antagonists”, Fernström Symp Series, R. Hâkanson and F. Sundler, eds., Elsevier, Amsterdam (1985).Google Scholar
  88. 88.
    F. Muller, R. O’Rahilly, and J. A. Tucker, The human larynx at the end of the embryonic period proper. I. The laryngeal and infrahyoid muscles and their innervation, Acta Otolaryngol (Stockh) 91: 323 (1981).Google Scholar
  89. 89.
    P. E. Sawchenko, and L. W. Swanson, A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and immunohistochemical techniques, Brain Res 210: 31 (1981).PubMedGoogle Scholar
  90. 90.
    G. Skagerberg, A. Björklund, and O. Lindvall, Further studies on the use of the fluorescent retrograde tracer True Blue in combination with monoamine histochemistry, J Neurosci Methods 14: 25 (1985).PubMedGoogle Scholar
  91. 91.
    J. C. Helke, and K. M. Hill, Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat, Neurosci 26: 539 (1988).Google Scholar
  92. 92.
    D. M. Katz, and H. J. Karten, Substance P in the vagal sensory ganglia: Localization in cell bodies and pericellular arborizations, J Comp Neurol 193: 549 (1980).PubMedGoogle Scholar
  93. 93.
    G. Skofitsch, and D. M. Jabobowitz, Galanin-like immunoreactivity in capsaicin sensitive sensory neurons and ganglia, Brain Res Bull 15: 191 (1985).PubMedGoogle Scholar
  94. 94.
    S. D. Brain, T. J. Williams, J. R. Tippins, H. R. Morris, and I. Maclntyre, Calcitonin gene-related peptide is a potent vasodilator, Nature 313: 54 (1985).PubMedGoogle Scholar
  95. 95.
    L. Huffman, and G. A. Hedge, Effects of vasoactive intestinal peptide on thyroid blood flow and circulating thyroid hormone levels in the rat, Endocrinology, 82: 7, (1986).Google Scholar
  96. 96.
    L. Huffman, and G. A. Hedge, Neuropeptide control of thyroid blood flow and hormone secretion, Life Sci 39: 2143 (1986).PubMedGoogle Scholar
  97. 97.
    M. Kalisnik, O. Vraspir-Porenta, T. Kham-Lindtner, M. Logonder-Mlinsek, Z. Pajer, D. Stiblar-Martincic, R. Zorc-Pleskovic, and M. Trobina, The interdependence of the follicular, parafollicular, and mast cells in the mammalian thyroid gland: A review and a synthesis, Am J Anat 183: 148 (1988).PubMedGoogle Scholar
  98. 98.
    S. Van Noorden, J. M. Polak, and A. G. E. Pearse, Single cellular origin of somatostatin and calcitonin in the rat thyroid gland, Histochemistry 53: 243 (1977).PubMedGoogle Scholar
  99. 99.
    Y. Kameda, H. Oyama, M. Endoh, and M. Horino, Somatostatin immunoreactive C cells in thyroid glands from various mammalian species, Anat Rec 204: 161. (1982).PubMedGoogle Scholar
  100. 100.
    T. Grunditz, P. Persson, R. Hâkanson, A. Absood, G. Böttcher, C. Rerup, and F. Sundler, Heloderminlike peptides in thyroid C cells. Stimulation of thyroid hormone secretion and suppression of calcium incorporation in bone, Proc. Nat. Acad. Sci. USA, in press (1989).Google Scholar
  101. 101.
    F. Sundler, J. Christophe, P. Robberecht, N. Yanaihara, C. Yanaihara, T. Grunditz, and R. Hâkanson, Is helodermin produced by medullary thyroid carcinoma cells and normal C cells? Immunocytochemical evidence, Regul Pept 20: 83 (1988).PubMedGoogle Scholar
  102. 102.
    M. Hoshino, C. Yanaihara, Y-M. Hong, S. Kishida, Y. Katsumaru, A. Vandermeers, M. Vandermeers-Piret, P. Robberecht, J. Christophe, and N. Yanaihara, Primary structure of helodermin, a VIP-secretinlike peptide isolated from Gila monster venom, FEBS Lett 178: 233 (1984).PubMedGoogle Scholar
  103. 103.
    P. Robberecht, J. Graef, M-C. Woussen-Colle, M-C. Vandermeers-Piret, A. Vandermeers, P. De Neef, A. Cauvin, C. Yanaihara, N. Yanaihara, J. Christophe, Immunoreactive helodermin-like peptides in the rat: a new class of mammalian neuropeptides related to secretin and VIP, Biochem Biophys Res Commun 130: 333 (1985).PubMedGoogle Scholar
  104. 104.
    S. Naruse, A. Yasui, S. Kishida, M. Kadowaki, M. Hoshino, T. Ozaki, P. Robberecht, J. Christophe, C. Yanaihara, and N. Yanaihara, Helodermin has a VIP-like effect upon canine blood flow, Peptides 7: 237 (1986).PubMedGoogle Scholar
  105. 105.
    T. Grunditz, R. Hâkanson, C Rerup, and F. Sundler, Helodermin-stimulated thyroid hormone secretion: Effects of other C cell peptides and a-and ßadrenoceptor blockade, in preparation (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Torsten Grunditz
    • 1
  • Frank Sundler
    • 2
  • Rolf Håkanson
    • 3
  • Rolf Uddman
    • 1
  1. 1.Department of OtolaryngologyUniversity of LundLundSweden
  2. 2.(Malmö) Medical Cell ResearchUniversity of LundLundSweden
  3. 3.PharmacologyUniversity of LundLundSweden

Personalised recommendations