Thyroid-Stimulating Hormone: Structure and Function

  • James A. Magner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 261)


Thyroid-stimulating hormone (TSH) is a pituitary-derived glycoprotein of molecular weight 28,000 that is composed of two noncovalently linked subunits, α and β. TSH is chemically related to the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as to placental chorionic gonadotropin (CG). TSH is synthesized by thyrotropes of the anterior pituitary and stored in secretory granules. TSH is released into the circulation in a regulated manner, binds to thyroid cells and activates them to release thyroid hormones.


Thyroid Hormone Glycoprotein Hormone Hypothyroid Mouse High Mannose Oligosaccharide Pituitary Glycoprotein Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. E. Smith, Experimental ablation of the hypophysis in the frog embryo, Science 44: 280 (1916).Google Scholar
  2. 2.
    B. M. Allen, The results of extirpation of the anterior lobe of the hypophysis and of the thyroid of Rana pipiens larvae, Science 44: 755 (1916).Google Scholar
  3. 3.
    P. E. Smith, Relations of the activity of the pituitary and thyroid glands, Harvey Lectures Ser. 25: 129 (1931).Google Scholar
  4. 4.
    A. White, The isolation and chemistry of anterior pituitary hormones influencing growth and metabolism, in: The Chemistry and Physiology of Hormones, ed., F.R. Moulton. Lancaster (1944).Google Scholar
  5. 5.
    A. White, Preparation and chemistry of anterior pituitary hormones, Physiol. Rev. 26:574 (1946).Google Scholar
  6. 6.
    A. Albert, The biochemistry of the thyrotropic hormone, Ann. NZ Acad. Sci. 50:466 (1949).Google Scholar
  7. 7.
    M. Sonenberg, Chemistry and physiology of the thyroid stimulating hormone, Vitamins Hormones 16: 205 (1958).Google Scholar
  8. 8.
    R. W. Bates and P.G. Condliffe, Studies on the chemistry and bioassay of thyrotropins from bovine pituitaries, transplantable pituitary tumors of mice, and blood plasma, Recent Progr. Hormone Res. 16: 309 (1960).Google Scholar
  9. 9.
    J. G. Pierce, M.E. Carsten and L.K. Wynston. Purification and chemistry of the thyroid-stimulating hormone, Ann. NY Acad. Sci. 86:612 (1960).Google Scholar
  10. 10.
    R. W. Bates and P.G. Condliffe, The physiology and chemistry of thyroid stimulating hormone, in: The Pituitary Gland, G.W. Harris and B.T. Donovan, eds., Berkeley: Univ. of California Press, (1966).Google Scholar
  11. 11.
    P. G. Condliffe and J. Robbins, Pituitary thyroid-stimulating hormone and other thyroid-stimulating substances, in: Hormones in Blood ( 2nd ed. ), ed., C.H. Gray and A.L. Bacharach, New York, (1967).Google Scholar
  12. 12.
    J. G. Pierce, Chemistry of thyroid-stimulating hormone, in: Handbook of Physiology, The Pituitary Gland, American Physiological Society, Bethesda, (1974).Google Scholar
  13. 13.
    C. T. Sawin, Defining thyroid hormone: its nature and control, in: Endocrinology, People and Ideas, S.M. McCann, ed., American Physiological Society, Bethesda, (1988).Google Scholar
  14. 14.
    R. G. Hoskins, The thyroid-pituitary apparatus as a servo (feedback) mechanism, J. Clin. Endocr. 9:1429 (1949).Google Scholar
  15. 15.
    K. Brown-Grant, The “feedback” hypothesis of the control of thyroid function, Ciba Found. Colloq. Endocrinol. 10:97 (1957).Google Scholar
  16. 16.
    S. Reichlin, Functions of the median eminence gland, New End. J.Med. 275:600 (1966).Google Scholar
  17. 17.
    P. E. Smith and I.P. Smith, The repair and activation of the thyroid in the hypophysectomized tadpole by the parenteral administration of fresh anterior lobe of the bovine hypophysis, J.Med. Res. 43:267 (1922).Google Scholar
  18. 18.
    P. E. Smith, Ablation and transplantation of the hypophysis in the rat, Anat. Rec. 32:221 (1926).Google Scholar
  19. 19.
    M. Aron, Action de la prehypophyse sur le thyroide chez le cobaye, C.R. Seances Soc. Biol. Fil. 102:682 (1929).Google Scholar
  20. 20.
    L. Loeb and R.B. Bassett, Effect of hormones of anterior pituitary on thyroid gland in the guinea pig, Proc. Soc. Exp. Biol. Med. 26:860 (1929).Google Scholar
  21. 21.
    K. Junkmann and W. Schoeller, Uber das thyreotrope Hormon des Hypophysenvorderlappens, Klin. Wochenschr. 11:1176 (1932).Google Scholar
  22. 22.
    R. 0. Greep, Separation of a thyrotropic from the gonadotropic substances of the pituitary, Am. J. Physiol. 110:692 (1935).Google Scholar
  23. 23.
    P. G. Condliffe and R.W. Bates, Chromatography of thyrotrophin on diethylaminoethyl cellulose, Arch. Biochem. Biophys. 68:229 (1957).Google Scholar
  24. 24.
    J. M. McKenzie, Bio-assay of thyrotrophin in man, Physiol. Rev. 40:398 (1960).Google Scholar
  25. 25.
    T.-H. Liao, G. Hennen, S.M. Howard, B. Shome, and J.G. Pierce, Bovine thyrotropin. Countercurrent distribution and a comparison with the isolated subunits of luteinizing hormone, J. Biol. Chem. 244:6458 (1969).Google Scholar
  26. 26.
    B. Shome, D.M. Brown, S.M. Howard, and J.G. Pierce, Bovine, human and porcine thyrotropins: molecular weights, amino-and carboxyl-terminal studies, Arch. Biochem. Biophys. 126:456 (1968).Google Scholar
  27. 27.
    H. Papkoff and T.S.A. Samy, Isolation and partial characterization of the polypeptide chains of ovine interstitial cell-stimulating hormone, Biochim. Biophys. Acta 147:175 (1967).Google Scholar
  28. 28.
    P. G. Condliffe, Biochemical specificity of thyrotropins, in: La Specificite Zoologique des Hormones Hypophysaires et de Leurs Acitivites, Paris: Centre Natl. Rech. Sci., (1969).Google Scholar
  29. 29.
    T.-H. Liao and J.G. Pierce, The presence of a common type of subunit in bovine thyroid stimulating and luteinizing hormones, J. Biol. Chem. 245:3275 (1970).Google Scholar
  30. 30.
    T.-H. Liao and J.G. Pierce, The primary structure of bovine thyrotropin. II. The amino acid sequences of the reduced, S-carboxymethyl a and ß chains, J. Biol. Chem. 246:850 (1971).Google Scholar
  31. 31.
    W. Gilbert, Why genes in pieces? Nature 271: 501 (1978).Google Scholar
  32. 32.
    F. Crick, Split genes and RNA splicing, Science 204: 264 (1979).Google Scholar
  33. 33.
    J. Darnell, Variety in the level of gene control in eucaryotic cells, Nature 297: 365 (1982).Google Scholar
  34. 34.
    G. Blobel and B. Dobberstein, Transfer of proteins across membranes, I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell Biol. 67: 835 (1975).Google Scholar
  35. 35.
    J. A. Magner, Information in the signal peptide? J. Theor. Biol. 99:831 (1982).Google Scholar
  36. 36.
    M. Hortsch and D.I. Meyer, Pushing the signal hypothesis: What are the limits? Biol. Cell 52:1 (1984).Google Scholar
  37. 37.
    Y. Fujimoto, Y. Watanabe, M. Uchida and M. Ozaki, Mammalian signal peptidase: Partial purification and general characterization of the signal peptidase from microsomal membranes of porcine pancreas, J. Biochem. 96:1125 (1984).Google Scholar
  38. 38.
    C. A. Kaiser, D. Preuss, P. Grisafi and D. Botstein, Many random sequences functionally replace the secretion signal sequence of yeast invertase, Science 235: 312 (1987).Google Scholar
  39. 39.
    M. Sjostrom, S. Wold, A. Wieslander, and L. Rilfors, Signal peptide amino acid sequences in Escherichia coli contain information related to final protein localization. A multivariate data analysis, EMBO J. 6: 823 (1987).Google Scholar
  40. 40.
    J. G. Pierce, and T.F. Parsons, Glycoprotein hormones: structure and function, Annu. Rev. Biochem. 50:465 (1981).Google Scholar
  41. 41.
    W. W. Chin, Organization and expression of glycoprotein hormone genes, in: The Pituitary Gland, Imura, ed., Raven, New York (1985).Google Scholar
  42. 42.
    J. M. Hershman and A.E. Pekary, Regulation of thyrotropin secretion, in: The Pituitary Gland, Imura, ed., Raven, New York (1985).Google Scholar
  43. 43.
    W. W. Chin, Glycoprotein hormone genes, in: Habener ed: Molecular Cloning of Hormone Genes. Humana, Clifton (1987).Google Scholar
  44. 44.
    W. W. Chin, Hormonal regulation of thyrotropin and gonadotropin gene expression, Clinical Research 36 (5): 484 (1988).Google Scholar
  45. 45.
    J. C. Fiddes and H.M, Goodman, Isolation, cloning and sequence analysis of the cDNA for the a-subunit of human chorionic gonadotropin, Nature 281: 351 (1979).Google Scholar
  46. 46.
    J. C. Fiddes and H.M. Goodman, The gene encoding the common alpha subunit of the four human glycoprotein hormones, J. Mol. Appl. Genet. 1:3 (1981).Google Scholar
  47. 47.
    W. W. Chin, H.M. Kronenberg, P.C. Dee, F. Maloof and J.F. Habener, Nucleotide sequence of the mRNA encoding the pre-asubunit of mouse thyrotropin, Proc. Natl. Acad. Sci. U.S.A. 78:5329 (1981).Google Scholar
  48. 48.
    J. E. Godine, W.W. Chin, and J.F. Habener, a-subunit of rat pituitary glycoprotein hormones: primary structure of the precursor determined from the nucleotide sequence of cloned cDNAs, J. Biol. Chem. 257:8368 (1982).Google Scholar
  49. 49.
    J. H. Nilson, A.R. Thomason, M.T. Cserbak, C.L. Moncman and R.P. Woychik, Nucleotide sequence of a cDNA for the common a-subunit of the bovine pituitary glycoprotein hormones, J. Biol. Chem. 258:4679 (1983).Google Scholar
  50. 50.
    J. E. Godine, W.W. Chin, and J.F. Habener, Detection of two precursors to each of the subunits of human chorionic gonadotropin translated from placental mRNA in the wheat germ cell-free system, Biochem. Biophys. Res. Commun. 104:463 (1982).Google Scholar
  51. 51.
    W. W. Chin, J.V. Maizel, Jr., and J.F. Habener, Differences in sizes of human compared to murine alpha subunits of the glycoprotein hormones arises by a four-codon gene deletion or insertion, Endocrinology 112: 482 (1983).Google Scholar
  52. 52.
    M. Boothby, R.W. Ruddon, C. Anderson, D. McWilliams, and I. Boime, A single gonadotropin a-subunit gene in normal tissue and tumor-derived cell-lines, J. Biol. Chem. 256:5121 (1981).Google Scholar
  53. 53.
    R. G. Goodwin, C.L. Moncman, F.M. Rottman, and J.H. Nilson, Characterization and nucleotide sequence of the gene for the common a-subunit of the bovine pituitary glycoprotein hormones, Nucleic Acid Res. 11: 6873 (1983).Google Scholar
  54. 54.
    J. Burnside, P.R. Buckland and W.W. Chin, Isolation and characterization of the gene encoding the a-subunit of the rat pituitary glycoprotein hormone, Gene 70: 67 (1988).PubMedCrossRefGoogle Scholar
  55. 55.
    J. A. Bokar, W.J. Roesler, G.R. Vandenbark, D.M. Kaetzel, R.W. Hanson and J.H. Nilson, Characterization of the cAMP responsive elements from the genes for the a-subunit of glycoprotein hormones and phosphoenolpyruvate carboxykinase (GTP), J.Biol. Chem. 263:19740 (1988).Google Scholar
  56. 56.
    S. L. Naylor, W.W. Chin, H.M. Goodman, P.A. Lalley, K.H. Grzeschik and A.Y. Sakaguchi, Chromosomal assignment of genes encoding the a-and ß-subunits of glycoprotein hormones in man and mouse, Somatic Cell Genet. 9: 757 (1983).CrossRefGoogle Scholar
  57. 57.
    I. A. Kourides, P.E. Barker, J.A. Gurr, D.D. Pravtcheva and F.H. Ruddle, Assignment of the genes for the a-and ß-subunits of thyrotropin to different mouse chromosomes, Proc. Nat. Acad. Sci. U.S.A. 81:517 (1984).Google Scholar
  58. 58.
    W. W. Chin, J.F. Habener, J.D. Kieffer and F. Maloof, Cell-free translation of the messenger RNA coding for the a-subunit, J. Biol. Chem. 253:7985 (1978).Google Scholar
  59. 59.
    I. A. Kourides and B.D. Weintraub, mRNA-Directed biosynthesis of a-subunit of thyrotropin: Translation in cell-free and whole-cell systems, Proc. Nat. Acad. Sci. U.S.A. 76:298 (1979).Google Scholar
  60. 60.
    R. A. Maurer, M.L. Croyle and J.E. Donelson, Sequence of a cloned cDNA for the beta subunit of bovine thyrotropin predicts a protein containing both NH2 and COOH terminal extensions, J. Biol. Chem. 259:5024 (1984).Google Scholar
  61. 61.
    J. A. Gurr, J.F. Catterall and I.A. Kourides, Cloning of cDNA encoding the pre-ß subunit of mouse thyrotropin, Proc. Natl. Acad. Sci. U.S.A. 80:2122 (1983).Google Scholar
  62. 62.
    W. W. Chin, J.A. Muccini and L. Shin, Cloning and characterization on of cDNAs encoding the precursor of the ß-subunit of rat thyrotropin, Biochemistry (submitted).Google Scholar
  63. 63.
    M. L. Croyle, A. Bhattacharya, D.F. Gordon, Analysis of the organization and nucleotide sequence of the chromosomal gene for the ß-subunit of rat thyrotropin, DNA 5: 299 (1986).PubMedCrossRefGoogle Scholar
  64. 64.
    F. E. Carr, L.R. Need, W.W. Chin, Isolation and characterization of the rat thyrotropin ß-subunit gene: Differential regulation of two transcriptional start sites by thyroid hormone, J. Biol. Chem. 62:981 (1987).Google Scholar
  65. 65.
    F. E. Carr, and W.W. Chin, Differential thyroid-hormone-regulated rat TSH ß gene expression detected by blot hybridization, Mol. Endo. 2:667 (1988).Google Scholar
  66. 66.
    W. M. Wood, D.F. Gordon and E.C. Ridgway, Expression of the ß-subunit gene of murine thyrotropin results in multiple messenger ribonucleic acid species which are generated by alternative exon splicing, Mol. Endo. 1:875 (1987).Google Scholar
  67. 67.
    Wolf, I.A. Kourides and J.A. Gurr, Expression of the gene for the ß-subunit of mouse thyrotropin results in multiple mRNAs differing in their 5’-untranslated regions, J. Biol. Chem. 262:16596 (1987).Google Scholar
  68. 68.
    F. E. Carr, J. Burnside, and W.W. Chin, Thyroid hormones regulate rat TSH ß gene promoter activity expressed in GH3 cells, Ann. Mtg. American Thyroid Assn. Abstract T-66, (1987).Google Scholar
  69. 69.
    M. D. Crew and S.R. Spindler, Thyroid hormone regulation of the transfected rat growth hormone promoter, J. Biol. Chem. 261:5018 (1986).Google Scholar
  70. 70.
    F. Flug, R.P. Copp, J. Casanova, Cis-acting elements of the rat growth hormone gene which mediate basal and regulated expression by thyroid hormone, J. Biol. Chem. 262:6373 (1987).Google Scholar
  71. 71.
    C. K. Glass, R. Franco, C. Weinberger, A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone, Nature 329: 738 (1987).Google Scholar
  72. 72.
    R. J. Koenig, G.A. Brent, R.L. Warne, Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone, Proc. Natl. Acad. Sci. U.S.A. 84:5670 (1987).Google Scholar
  73. 73.
    D. S. Darling, J. Burnside and W.W. Chin, Thyroid hormone receptor binds to a region of the rat TSH beta gene, Endocrine Society Abstract #1135 (1988).Google Scholar
  74. 74.
    J. Sap, A. Munoz, K. Damm, Y. Goldberg, J. Ghysdael, A. Leutz, H. Beug and B. Vennstrom, The c-erb-A protein is a high-affinity receptor for thyroid hormone, Nature 324: 6350 (1986).Google Scholar
  75. 75.
    C. Weinberger, C.C. Thompson, E.S. Ong, R. Lebo, D. Gruol and R.M. Evans, The c-erb-A gene encodes a thyroid hormone receptor, Nature 324: 641 (1986).Google Scholar
  76. 76.
    C. C. Thompson, C. Weinberger, R. Lebo, R.M. Evans, Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system, Science 237: 1610 (1987).Google Scholar
  77. 77.
    M. A. Lazar, and W.W. Chin, Regulation of two c-erb-A messenger ribonucleic acids in rat GH3 cells by thyroid hormone, Mol. Endo. 2:479 (1988).Google Scholar
  78. 78.
    M. A. Lazar, R.A. Hodin, D.S. Darling and W.W. Chin, Identification of a rat c-erbA a-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone, Mol. Endo. 2: 893 (1988).CrossRefGoogle Scholar
  79. 79.
    D. F. Gordon, W.M. Wood and E.C. Ridgway, Organization and nucleotide sequence of the gene encoding the ß-subunit of murine thyrotropin, DNA 7: 17 (1988).PubMedCrossRefGoogle Scholar
  80. 80.
    P. A. Wight, M.D. Crew and S.R. Spindler, Discrete positive and negative thyroid hormone-responsive transcription regulatory elements of the rat growth hormone gene, J. Biol. Chem. 262:5659 (1987).Google Scholar
  81. 81.
    M. R. Montminy, K.A. Sevarino, J.A. Wagner, G. Mandel and R.H. Goodman, Identification of a cyclic-AMP-responsive element within the rat somatostatin gene, Proc. Nat. Acad. Sci. U.S.A. 83:6682 (1986).Google Scholar
  82. 82.
    M. J. Short, A. Wynshaw-Boris, H.P. Short and R.W. Hanson, Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region, J. Biol. Chem. 261:9721 (1986).Google Scholar
  83. 83.
    Y. Hayashizaki, K. Miyai, K. Kato and K. Matsubara, Molecular cloning of the human thyrotropin-ß subunit gene, FEBS Lett. 188:394 (1985).Google Scholar
  84. 84.
    G. K. Whitfield, R.E. Powers, J.A. Gurr, 0. Wolf and I.A. Kouride, Isolation of a gene encoding human thyrotropin beta subunit, in: Frontiers in Thyroidology, G. Medeiros-Neto and E. Gaitan, eds., Plenum Medical Book Co., NY (1986).Google Scholar
  85. 85.
    F. E. Wondisford, S. Radovick, J.M. Moates, S.J. Usala and B.D. Weintraub, Isolation and characterization of the human thyrotropin 0-subunit gene: differences in gene structure and promoter function from murine species, J. Biol. Chem. 263:12538 (1988).Google Scholar
  86. 86.
    K. Miyai, Y. Endo, Y. Iijima, 0. Kabutomori, and Y. Hayashizaki, Serum free thyrotropin subunit in congenital isolated thyrotropin deficiency, Endocrinol. Japon. 35(3):517 (1988).Google Scholar
  87. 87.
    K. Miyai, Y. Hayasizaki and K. Matsubara, Familial hypothyroidism due to thyrotropin gene abnormality, International Congress of Endocrinology, Kyoto, Symposium 76, (1988).Google Scholar
  88. 88.
    K. Miyai, M. Azukizawa and Y. Kumahara, Familial isolated thyrotropin deficiency, New Eng. J. Med. 285:1043 (1971).Google Scholar
  89. 89.
    S. Fukushige, T. Murostsu and K. Matsubara, Chromosomal assignment of human genes for gastrin, thyrotropin (TSH)-ß subunit and c-erb B-2 by chromosome sorting combined with velocity sedimentation and Southern hybridization, Bioch. Biophy. Res. Commun. 134:477 (1986).Google Scholar
  90. 90.
    N. C. Dracopoli, W.J. Rettig, G.K. Whitfield, G.J. Darlington, B.A. Spengler, J.L. Biedler, L.J. Old and I.A. Kourides. Assignment of the gene for the /3-subunit of thyroid-stimulating hormone to the short arm of human chromosome 1, Proc. Natl. Acad. Sci. U.S.A. 83:1822 (1986).Google Scholar
  91. 91.
    Y. Hayashizaki, Y. Endo, K. Miyai and K. Matsubara, The production of active human thyroid-stimulating hormone from a and ß mRNAs in Xenopus laevis oocytes, Bioch. Biophys. Res. Commun. 152:703 (1988).Google Scholar
  92. 92.
    J. A. Franklyn and M.C. Sheppard, Regulation of TSH gene transcription, European J. Clin. Invest. 16:452 (1986).Google Scholar
  93. 93.
    J. A. Franklyn and M.C. Sheppard, Thyrotrophin gene regulation, J. Endocr. 117:161 (1988).Google Scholar
  94. 94.
    J. P. Furth, J. Moy, J. Hershman and G. Ueda, Thyrotropic tumor syndrome, Arch. Pathol. 96:217 (1973).Google Scholar
  95. 95.
    J. L. Bakke and N. Lawrence, Influence of propylthiouracil and thyroxine on synthesis and secretion of thyroid stimulating hormone in the hypothyroid rat, Acta Endocrinol. (Copenh.) 46: 111 (1964).Google Scholar
  96. 96.
    C. Y. Bowers, A.V. Schally, G.A. Reynolds, and W.D. Hawley, Interactions of L-thyroxine or L-triiodothyronine and thyrotropin-releasing factor on the release and synthesis of thyrotropin from the anterior pituitary gland of mice, Endocrinology 81: 741 (1967).PubMedGoogle Scholar
  97. 97.
    G. P. Vanrees, The effect of triiodothyronine and thyroxine on thyrotropin levels in the anterior pituitary gland and blood serum of thyroidectomized rats, Acta Endocrinol. (Copenh.) 51: 619 (1966).Google Scholar
  98. 98.
    A. G. Vagenakis, Regulation of TSH secretion, in: Clinical Neuroendocrinology: A Pathophysiological Approach, G. Tolis, ed., Raven Press, New York, (1979).Google Scholar
  99. 99.
    M. C. Gershengorn, Regulation of thyrotropin poduction by mouse pituitary thyrotrophic tumor cells in vitro by physiological levels of thyroid hormones, Endocrinology 102: 1122 (1978).Google Scholar
  100. 100.
    G. T. Gard, B. Bernstein, and P.R. Larsen, Studies of the mechanism of 3,5,3’-triiodothyronine-induced suppression of secretagogue-induced thyrotropin release in vitro, Endocrinology 108:2046 (1981).Google Scholar
  101. 101.
    B. D. Weintraub and S.W. Rosen, Ectopic production of the isolated beta subunit of human chorionic gonadotropin, J. Clin. Invest. 52:3135 (1973).Google Scholar
  102. 103.
    A. H. Tashjian Jr., B.D. Weintraub, N.J. Barowsky, A.S. Rabson and S.W. Rosen, Subunits of human chorionic gonadotropin: unbalanced synthesis and secretion by clonal cell strains derived from a bronchogenic carcinoma, Proc. Natl. Acad. Sci. U.S.A. 70:1419 (1973).Google Scholar
  103. 103.
    S. W. Rosen and B.D. Weintraub, Ectopic production of the isolated alpha subunit of the glycoprotein hormones. A quantitative marker in certain cases of cancer, N. Engl. J. Med. 290:1441 (1974).Google Scholar
  104. 104.
    I. A. Kourides, B.D. Weintraub, E.D. Ridgway, and F. Maloof, Pituitary secretion of free alpha and beta subunit of human thyrotropin in patients with thyroid disorders, J. Clin. Endocrinol. Metab. 40:872 (1975).Google Scholar
  105. 105.
    C. Hagen, and A.S. McNeilly, Identification of human luteinizing hormone, follicle-stimulating hormone, luteinizing hormone ß-subunit and gonadotropin a-subunit in foetal and adult pituitary glands, J. Endocrinol. 67:49 (1975).Google Scholar
  106. 106.
    M. R. Blackman, M.R. Gershengorn, and B.D. Weintraub, Excess production of free alpha subunits by mouse pituitary thyrotrophic tumor cells in vitro, Endocrinology 102:499 (1978).Google Scholar
  107. 107.
    I. A. Kourides, M.B. Landon, B.J. Hoffman, and B.D. Weintraub, Excess free alpha relative to beta subunits of the glycoprotein hormones in normal and abnormal human pituitary glands, Clin. Endocrinol. 12:407 (1980).Google Scholar
  108. 108.
    E. C. Ridgway, J.D. Kieffer, D.S. Ross, M. Downing, H. Mover and W.W. Chin, Mouse pituitary tumor line secreting only the alpha subunit of the glycoprotein hormones: development from the thyrotropic tumor, Endocrinology 113: 1587 (1983).Google Scholar
  109. 109.
    D. S. Ross, M.F. Downing, W.W. Chin, J.D. Kieffer, and E.C. Ridgway, Changes in tissue concentrations of thyrotropin, free thyrotropin ß, and a-subunits after thyroxine administration: comparison of mouse hypothyroid pituitary and thyrotropic tumors, Endocrinology 112: 2050 (1983).Google Scholar
  110. 110.
    J. A. Gurr, and I.A. Kourides, Regulation of thyrotropin biosynthesis. Discordant effect of thyroid hormones on a and ß subunit mRNA levels, J. Biol. Chem. 258:10208 (1983).Google Scholar
  111. 111.
    W. W. Chin, M.A. Shupnik, D.S. Ross, J.F. Habener and E.C. Ridgway, Regulation of the alpha and thyrotropin beta-subunit messenger ribonucleic acids by thyroid hormones, Endocrinology 116: 873 (1985).Google Scholar
  112. 112.
    M. A. Shupnik, W.W. Chin, J.F. Habener and E.C. Ridgway, Transcriptional regulation of the thyrotropin subunit genes by thyroid hormones, J. Biol. Chem. 260:2900 (1985).Google Scholar
  113. 113.
    M. L. Croyle, and R.A. Maurer, Thyroid hormone decreases thyrotropin ß-subunit on mRNA levels in rat anterior pituitary, DNA 3: 231 (1984).Google Scholar
  114. 114.
    J. A. Gurr, and I.A. Kourides, Ratios of a to TSHß mRNA in normal and hypothyroid pituitaries and TSH-secreting tumors, Endocrinology 115: 830 (1984).Google Scholar
  115. 115.
    J. A. Franklyn, D.F. Wood, N.J. Balfour and M.C. Sheppard, Effect of triiodothyronine treatment on thyrotrophin ß-and a-messenger RNAs in the pituitary of the euthyroid rat, Mol. Cell. Endocr. 60:1 (1988).Google Scholar
  116. 116.
    F. E. Carr, E.C. Ridgway and W.W. Chin, Rapid simultaneous measurement of rat alpha-and thyrotropin (TSH) beta-subunit messenger ribonucleic acids (mRNAs) by solution hybridization: regulation of TSH subunit mRNAs by thyroid hormones, Endocrinology 117: 1272 (1985).Google Scholar
  117. 117.
    J. A. Franklyn, D.F. Wood, N.J. Balfour, D.B. Ransden, K. Docherty, W.W. Chin, and M.C. Sheppard, Effect of hypothyroidism and thyroid hormone replacement in vivo on pituitary cytoplasmic concentrations of thyrotropin ß and a subunit mRNAs, Endocrinology 120: 2279 (1987).Google Scholar
  118. 118.
    S. A. D’Angelo, D.H. Paul, D.R. Wall and D.M. Lombardi, Pituitary thyrotropin rebound phenomenon and kinetics of secretion in the goitrous rat: differential effects on synthesis and release, Endocrinology 99: 935 (1976).Google Scholar
  119. 119.
    E. C. Ridgway, I.A. Kourides, W.W. Chin, D.S. Cooper and F. Maloof, Augmentation of pituitary thyrotrophin response to TRH during subphysiological tri-iodothyronine therapy in hypothyroidism, Clinical Endocrinology 10: 343 (1979).Google Scholar
  120. 120.
    A. Shupnik, L.J. Ardisson, M.J. Meskell, J. Bornstein and E.C. Ridgway, Triiodothyronine (T3) regulation of thyrotropin subunit gene transcription is proportional to T 3 nuclear receptor occupancy, Endocrinology 118: 367 (1986).Google Scholar
  121. 121.
    C. Y. Bowers, K.L. Lee, and A.V. Schally, A study of the interaction of the thyrotropin-releasing factor and L-triiodothyronine: effects of puromycin and cycloheximide, Endocrinology 82: 75 (1966).Google Scholar
  122. 122.
    S. Melmed, J. Park, and J.M. Hershman, Triiodothyronine induces a transferable factor which suppreses TSH secretions in cultured mouse thyrotropic tumor cells, Biochem. Biophys. Res. Comm. 98:1022 (1981).Google Scholar
  123. 123.
    M. A. Shupnik, S.L. Greenspan, and E.C. Ridgway, Transcriptional regulation of thyrotropin subunit genes by thyrotropinreleasing hormone and dopamine in pituitary cell culture. J. Biol. Chem. 261:12675 (1986).Google Scholar
  124. 124.
    J. A. Franklyn, M. Wilson, J.R. Davis, D.B. Ramsden, K. Docherty, and M.C. Sheppartd, Demonstration of thyrotrophin ß-subunit messenger RNA in rat pituitary cells in primary culture: evidence for regulation by thyrotrophin-releasing hormone and forskolin, J. Endocrin. 111:R1 (1986).Google Scholar
  125. 125.
    S. S. Lippman, S. Amr, and B.D. Weintranb, Discordant effects of thyrotropin-releasing hormone on pre-and posttranslational regulation of TSH biosynthesis in rat pituitary, Endocrinology 119: 343 (1986).Google Scholar
  126. 126.
    J. A. Franklyn, D.F. Wood, N.J. Balfour, D.B. Ransden, K.Docherty, and M.C. Sheppard, Modulation by oestrogen of thyroid hormone effects on thyrotrophin gene expression, J. Endocrin. 115: 53 (1987).CrossRefGoogle Scholar
  127. 127.
    J. Franklyn, J. Ahlquist, N. Balfour, S. King, and M.C. Sheppard, Testosterone and the effects of thyroid status on pituitary and hepatic mRNAs, Endocrinology 120: T69 (1987).Google Scholar
  128. 128.
    T. L. Klug and R.C. Adelman, Evidence for a large thyrotropin and its accumulation during aging in rats, Biochem. Biophys. Res. Commun. 77:1431 (1977).Google Scholar
  129. 129.
    I. A. Kourides, B.D. Weintraub, and F. Maloof, Large molecular weight TSH-ß: The sole immunoactive form of TSH-ß in certain human sera, J. Clin. Endocrinol. Metab. 47:24 (1978).Google Scholar
  130. 130.
    I. M. Spitz, D. LeRoith, H. Hirsch, P. Carayon, F. Pekonen, Y. Liel, R. Sobel, Z. Chorer and B.D. Weintraub, Increased high-molecular-weight thyrotropin with impaired biologic activity in a euthyroid man, N. Engl. J. Med. 304:278 (1981).Google Scholar
  131. 131.
    B. D. Weintraub, G. Krauth, S.W. Rosen, and A.S. Rabson, Differences between purified ectopic and normal alpha subunits of human glycoprotein hormones, J. Clin. Invest. 56:1043 (1976).Google Scholar
  132. 132.
    B. D. Weintraub, B.S. Stannard, and L. Meyers, Glycosylation of thyroid-stimulating hormone in pituitary tumor cells. Influence of high-mannose oligosaccharide units on subunit aggregation, combination and intracellular degradation, Endocrinology 112: 1331 (1983).Google Scholar
  133. 133.
    W. W. Chin, J.R. Habener, J.D. Kieffer, and F. Maloof, Cell-free translation of the messenger RNA coding for the a subunit of thyroid-stimulating hormone, J. Biol. Chem. 253:7985 (1978).Google Scholar
  134. 134.
    L. C. Giudice, M.J. Waxdal, and B.D. Weintraub, Comparison of bovine and mouse pituitary glycoprotein hormone pre-a subunits synthesized in vitro, Proc. Natl. Acad. Sci. U.S.A. 76:4798 (1979).Google Scholar
  135. 135.
    L. C. Guidice, and B.D. Weintraub, Evidence for conformational differences between precursor and processed forms of TSH-ß subunit, J. Biol. Chem. 254:12679 (1979).Google Scholar
  136. 136.
    I. A. Kourides, N.C. Vamvakopoulos, and G.M. Maniatis, mRNA-directed biosynthesis of a-and ß-subunits of thyrotropin, J. Biol. Chem. 254:11106 (1979).Google Scholar
  137. 137.
    I. A. Kourides and B.D. Weintraub, mRNA-directed biosynthesis of a-subunit of thyrotropin: Translation in cell-free and whole-cell systems, Proc. Natl. Acad. Sci. U.S.A. 76:298 (1979).Google Scholar
  138. 138.
    N. C. Vamvakopoulos and I.A. Kourides, Identification of separate mRNAs coding for the a-and ß-subunits of thyrotropin, Proc. Natl. Acad. Sci. U.S.A. 76:3809 (1979).Google Scholar
  139. 139.
    B. D. Weintraub, and B.S. Stannard, Precursor-product relationships in the biosynthesis and secretion of thyrotropin and its subunits by mouse thyrotropic tumor cells, FEBS Lett. 92:303 (1978).Google Scholar
  140. 140.
    B. D. Weintraub, B.S. Stannard, D. Linnekin, and M. Marshall, Relationship of glycosylation to de novo thyroid-stimulating hormone biosynthesis and secretion by mouse pituitary tumor cells, J. Biol. Chem. 255:5715 (1980).Google Scholar
  141. 141.
    W. W. Chin and J.F. Habener, Thyroid-stimulating hormone subunits: Evidence from endoglycosidase-H cleavage for late presecretory glycosylation, Endocrinology 108: 1628 (1981).Google Scholar
  142. 142.
    W. W. Chin, F. Maloof, and J.F. Habener, Thyroid-stimulating hormone biosynthesis, J. Biol. Chem. 256:3059 (1981).Google Scholar
  143. 143.
    J. A. Magner and B.D. Weintraub, Thyroid-stimulating hormone subunit processing and combination in microsomal subfractions of mouse pituitary tumor, J. Biol. Chem. 257:6709 (1982).Google Scholar
  144. 144.
    H. Hoshina and I. Boime, Combination of rat lutropin subunit occurs early in the secretory pathway, Proc. Natl. Acad. Sci. U.S.A. 79:7649 (1982).Google Scholar
  145. 145.
    T. F. Parsons, G.A. Bloomfield, and J.G. Pierce, Purification of an altenative form of the a-subunit of the glycoprotein hormones from bovine pituitaries and identification of its 0-linked oligosaccharides, J. Biol. Chem. 258:240 (1983).Google Scholar
  146. 146.
    R. W. Ruddon, C.A. Hanson, and N.J. Addison, Synthesis and processing of human chorionic gonadotropin subunits in cultured choriocarcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 76:5143 (1979).Google Scholar
  147. 147.
    R. W. Ruddon, C.A. Hanson, A.H. Bryan, G.J. Putterman, E.L. White, F. Perini, K.S. Meade, and P.H. Aldenderfer, Synthesis and secretion of human chorionic gonadotropin subunits by cultured human malignant cells, J. Biol. Chem. 255:1000 (1980).Google Scholar
  148. 148.
    R. W. Ruddon, A.H. Bryan, C.A. Hanson, F. Perini, L.M. Cccorulli, and B.P. Peters, Characterization of the intracellular and secreted forms of the glycoprotein hormone chorionic gonadotropin produced by malignant cells, J. Biol. Chem. 256:5189 (1981).Google Scholar
  149. 149.
    R. W. Ruddon, R.J. Hartle, B.P. Peters, C. Anderson, R.I. Huat, and K. Stromberg, Biosynthesis and secretion of chorionic gonadotropin subunits by organ cultures of first trimester human placenta, J. Biol. Chem. 256:11389 (1981).Google Scholar
  150. 150.
    L. A. Cole, F. Perini, S. Birken, and R.W. Ruddon, An oligosaccharide of the 0-linked type distinguishes the free from the combined form of hCG a subunit, Biochem. Biophys. Res. Commun. 122:1260 (1984).Google Scholar
  151. 151.
    N. H. Behrens and L.F. Leloir, Dolichol monophosphate glucose: an intermediate in glucose transfer in liver, Proc. Natl. Acad. Sci. U.S.A. 66:153 (1970).Google Scholar
  152. 152.
    R. Kornfeld and S. Kornfeld, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem. 54:631 (1985).Google Scholar
  153. 153.
    D. K. Struck and W.J. Lennarz, The function of saccharide-lipids in synthesis of glycoproteins, in: The Biochemistry of Glycoproteins and Proteoglycans., Lennarz, W.J., ed., Plenum Press, New York (1980).Google Scholar
  154. 154.
    T. W. Strickland and J.G. Pierce, The a-subunit of pituitary glycoprotein hormones, Formation of three-dimentsional structure during cell-free biosynthesis, J. Biol. Chem. 258:5927 (1983).Google Scholar
  155. 155.
    J. A. Magner, C. Ronin, and B.D. Weintraub, Carbohydrate processing of thyrotropin differs from that of free a-subunit and total glycoproteins in microsomal subfractions of mouse pituitary tumor, Endocrinology 115: 1019 (1984).Google Scholar
  156. 156.
    C. Ronin, B.S. Stannard, I. L. Rosenbloom, J.A. Magner, and B.D. Weintraub, Glycosylation and processing of high-mannose oligosaccharides of thyroid-stimulating hormone subunits: comparison to nonsecretory cell glycoproteins, Biochemistry 23: 4503 (1984).Google Scholar
  157. 157.
    C. Ronin, B.S. Stannard, and B.D. Weintraub, Differential processing and regulation of thyroid-stimulating hormone subunit carbohydrate chains in thyrotropic tumors and in normal and hypothyroid pituitaries, Biochemistry 24: 5626 (1985).Google Scholar
  158. 158.
    B. S. Stannard, N. Gesundheit, C. Ronin, J. Burnside, and B.D. Weintraub, Differential carbohydrate processing and secretion of thyrotropin and free a subunit, Effects of 1-deo-xynojirimycin, J. Biol. Chem. 263:8309 (1988).Google Scholar
  159. 159.
    J. A. Magner and E. Papagiannes, Structures of high-mannose oligosaccharides of mouse thyrotropin: differential processing of a-versus ß-subunits of the heterodimer, Endocrinology 120: 10 (1987).Google Scholar
  160. 160.
    B. P. Peters, R.F. Krzesicki, R.J. Hartle, F. Perini, and R.W. Ruddon, A kinetic comparison of the processing and secretion of the dimer and the uncombined a-and ß-subunits of chronic gonadotropin synthesized by human choriocarcinoma cells, J. Biol. Chem. 259:15123 (1984).Google Scholar
  161. 161.
    C. L. Corless, M.M. Matzuk, T.V. Ramabhadran, A. Krichevsky, and I. Boime, Gonadotropin beta subunits determine the rate of assembly and the oligosaccharide processing of hormone dimer in transfected cells, J. Cell Biol. 104:1173 (1987).Google Scholar
  162. 162.
    R. Sakakibara, Y. Yokoo, K. Yoshikoski, N. Tominaga, K. Eida, and M. Ishiguro, Subcellular localization of intracellular forms of human chorionic gonadotropin in first trimester placenta, J. Biochem. 102:993 (1987).Google Scholar
  163. 163.
    M. M. Matzuk, and I. Boime, The role of the asparagine-linked oligosaccharides of the a-subunit in the secretion and assembly of human chorionic gonadotropin, J. Cell Biol. 106:1049 (1988).Google Scholar
  164. 164.
    M. M. Matzuk and I. Boime, Site-specific mutagenesis defines the intracellular role of the asparagine-linked oligosaccharides of chorionic gonadotropin ß-subunit, J. Biol. Chem. 263:17106 (1988).Google Scholar
  165. 165.
    Y. Miura, V.S. Perkel, and J.A. Magner, Rates of processing of the high mannose oligosaccharide units at the three glycosylation sites of mouse thyrotropin and the two sites of free a-subunits, Endocrinology 123: 1296 (1988).Google Scholar
  166. 166.
    Y. Miura, V.S. Perkel, and J.A. Magner, Differential susceptibility to N-glycanase at the individual glycosylation sites of mouse thyrotropin and free a-subunits, Endocrinology 123: 2207 (1988).Google Scholar
  167. 167.
    C. Ronin, M.J. Papandreou, C. Canonne, and B.D. Weintraub, Carbohydrate chains of human thyrotropin are differentially susceptible to endoglycosidase removal on combined and free polypeptide units, Biochemistry 26: 5848 (1987).Google Scholar
  168. 168.
    K. 0. Lee, N. Gesundheit, H.C. Chen, and B. D. Weintraub, Enzymatic deglycosylation of thyroid stimulating hormone with peptide-N-glycosidase F and endo-B-N-acetylgucosaminidase F, Biochem. Biophys. Res. Commun. 138:230 (1986).Google Scholar
  169. 169.
    J. R. Swedlow, R.L. Matteri, and H. Papkoff, Deglycosylation of gonadotropins with an endoglycosidase, Proc. Soc. Exp. Biol. Med. 181:432 (1986).Google Scholar
  170. 170.
    Y. Miura, V.S. Perkel, and J.A. Magner, Differential susceptibility to several endoglycosidases at the individual glycosylation sites of mouse thyrotropin and free a-subunits, Manuscript in preparation.Google Scholar
  171. 171.
    E. F. Walborg and D.N. Ward, The carbohydrate components of ovine luteinizing hormone. Biochim. Biophys. Acta 78:304 (1963).Google Scholar
  172. 172.
    B. Shome, A.F. Parlow, V.D. Ramirez, H. Elrick, and J.G. Pierce, Bovine, Human and porcine thyrotropins: a comparison of electrophoresis and immunological properties with the bovine hormone, Arch. Biochem. Biophys. 126:444 (1968).Google Scholar
  173. 173.
    A. S. Hartree, M. Thomas, M. Graikevitch, E.T. Bell, D.W. Christie, G.V. Spaull, R. Taylor, and J.G. Pierce, Preparation and properties of subunits of human luteinizing hormone, J. Endocrinol. 51:169 (1971).Google Scholar
  174. 174.
    H. J. Grimek, J. Gorski, and B.C. Wentworth, Purification and characterization of bovine follicle-stimulating hormone: Comparision with ovine follicle-stimulating hormone, Endocrinology 104: 140 (1972).Google Scholar
  175. 175.
    M. R. Sairam, Role of arginine residues in ovine lutropin: Reversible modification by 1,2-cyclohexanedione, Arch. Biochem. Biophys. 176:197 (1976).Google Scholar
  176. 176.
    J. F. Kennedy and M.F. Chaplin, The structures of the carbohydrate moieties of the a-subunit of human chorionic gonadotrophin, Biochem. J. 155:303 (1976).Google Scholar
  177. 177.
    P. Bahl, L. Marz, M.J. Kessler, Isolation and characterization of N- and 0-glycosidic carbohydrate units of human chorionic gonadotropin, Biochem. Biophys. Res. Commun. 84:667 (1978).Google Scholar
  178. 178.
    K. Hara, P. Rathnam, and B.B. Saxena, Structure of the carbohydrate moieties of a-subunits of human follitropin, lutropin, and thyrotropin, J. Biol. Chem. 253:1582 (1978).Google Scholar
  179. 179.
    M. J. Kessler, M.S. Reddy, R.H. Shah, and 0.P. Bahl, Structures of N-glycosidic carbohydrate units of human chorionic gonadotropin, J. Biol. Chem. 254:7901 (1979).Google Scholar
  180. 180.
    Y. Endo, K. Yamashita, Y. Tachibana, S. Tojo, and A. Kobata, Structures of the asparagine-linked sugar chains of human chorionic gonadotropin, J. Biochem. 85:669 (1979).Google Scholar
  181. 181.
    T. Mizuochi and A. Kobata, Different asparagine-linked sugar chains on the two polypeptide chains of human chorionic gonadotropin, Biochem. Biophys. Res. Commun. 97:772 (1980).Google Scholar
  182. 182.
    M. R. Sairam, Studies on pituitary follitropin. I. An improved procedure for the isolation of highly potent ovine hormone, Arch Biochem. Biophys. 194:63 (1979).Google Scholar
  183. 183.
    M. R. Sairam, Studies on pituitary follitropin. II. Isolation and characterization of the subunits of the ovine hormone, Arch. Biochem. Biophys. 194:71 (1979).Google Scholar
  184. 184.
    P. Bahl, M.S. Reddy, and G.S. Bedi, A novel carbohydrate structure in bovine and ovine luteinizing hormones, Biochem. Biophys. Res. Commun. 96:1192 (1980).Google Scholar
  185. 185.
    G. S. Bedi, W.C. French, and 0.P. Bahl, Structure of carbohydrate units of ovine luteinizing hormone, J. Biol. Chem. 257:4345 (1982).Google Scholar
  186. 186.
    A. Tolvo, Y. Fujiki, V.P. Bhavanandan, P. Rathnam, and B.B. Saxena, Studies on the unique presence of an N-acetylgalactosamine residue in the carbohydrate moieties of human follicle-stimulating hormone, Biochim. Biophys.Acta 719:1 (1982).Google Scholar
  187. 187.
    Y. R. Jones-Brown, C.Y. Wu, B.D. Weintraub, and S.W. Rosen, Synthesis of chorionic gonadotropin subunits in human choriocarcinoma clonal cell line JEG-3: Carbohydrate differences in glycopeptides from free and combined a-subunits, Endocrinology 115: 1439 (1984).Google Scholar
  188. 188.
    E. D. Green, H. van Halbeek, I. Boime and J.V. Baenziger. Structural elucidation of the disulfated oligosaccharide from bovine lutropin, J. Biol. Chem. 260:15623 (1985).Google Scholar
  189. 189.
    E. D. Green, J.U. Baenziger, and I. Boime, Cell-free sulfation of human and bovine pituitary hormones. Comparison of the sulfated oligosaccharides of lutropin, follitropin and thyrotropin, J. Biol. Chem. 260:15631 (1985).Google Scholar
  190. 190.
    B. D. Weintraub, B.S. Stannard, J.A. Magner, C. Ronin, T. Taylor, L. Joshi, R.R. Constant, M. Menezes-Ferreira, P.A. Petrick and N. Gesundheit, Glycosylation and post-translational processing of thyroid-stimulating hormone: Clinical implications, Rec. Prog. Horm. Res. 41:577 (1985).Google Scholar
  191. 191.
    J. A. Magner and B.D. Weintraub, Thyroid-stimulating hormone biosynthesis, in: The Thyroid, Braverman, L.E., and S.H. Ingbar, eds., J.B. Lippincott (1986).Google Scholar
  192. 192.
    B. Nilsson, S.W. Rosen, B.D. Weintraub and D.A. Zopf, Differences in the carbohydrate moieties of the common a-subunits of human chorionic gonadotropin, luteinizing hormone, follicle-stimulating hormone, and thyrotropin: Preliminary structural inferences from direct methylation analysis, Endocrinology 119: 2737 (1986).Google Scholar
  193. 193.
    R. J. Ryan, H.T. Keutmann, M.C. Charlesworth, D.J. McCormick, R.P. Milius, F.O. Calvo and T. Vutyanvanich, Structure-function relationships of gonadotropins, Rec. Prog. Horm. Res. 43:383 (1987).Google Scholar
  194. 194.
    W.-K. Liu and D.N. Ward, The purification and chemistry of pituitary glycoprotein hormones, Pharmacol. Ther. 1B: 545 (1975).Google Scholar
  195. 195.
    H. Tamura-Takahasi and N. Ui, Purification and properties of whale thyroid-stimulating hormone. III. Properties of isolated multiple components, Endocrinol. Jpn 23:511 (1976).Google Scholar
  196. 196.
    K. M. M. Davy, J.S. Fawcett and C.J.O.R. Morris, Chemical differences between thyrotropin isohormones, Biochem. J. 167:279 (1977).Google Scholar
  197. 197.
    L. C. Guidice and J.G. Pierce, Separation of functional and non-functional ß-subunits of thyrotropin preparations by polyacrylamide gel electorphoresis, Endocrinology 101: 776 (1977).Google Scholar
  198. 198.
    G. Jacobson, P. Roos, and L. Wide, Characterization of five glycoproteins with thyrotropin activity, Biochim. Biophys. Acta 490:403 (1977).Google Scholar
  199. 199.
    T. Yora, S. Matsuzaki, Y. Kondo, and N. Ui, Changes in the contents of multiple components of rat pituitary thyrotropin in altered thyroid states, Endocrinology 104: 1682 (1979).Google Scholar
  200. 200.
    B. R. Webster, B.C.W. Hummel, J.M. McKenzie, G.M. Brown, and J.C. Paice, Isoelectric focusing of human thyrotropin: Identification of multiple components with dissociation of biological and immunological activities, in: Structure-Activity Relationships of Protein and Polypeptide Hormones, Proc. 2nd Inter. Symp., Excerpta Medicia, Amsterdam, Inter. Congr. Series No. 241: 369, (1972).Google Scholar
  201. 201.
    N. A. Takai, S. Filetti, and B. Rapoport, Studies on the bioactivity of radiolabeled highly-purified bovine thyrotropin, Biochem. Biophys. Res. Commun. 97:566 (1980).Google Scholar
  202. 202.
    N. A. Takai, S. Filetti, and B. Rapoport, Studies on the bioactivity of radioiodinated highly purified bovine thyrotropin: Analytical polyacrylamide gel electrophoresis, Endocrinology 109: 1144 (1981).Google Scholar
  203. 203.
    F. Pekonen, P. Carayon, S. Amr, and B.D. Weintraub, Heterogeneous forms of thyroid-stimulating hormone in mouse thyrotropic tumor and serum: Differences in receptor binding and adenylate cyclase-stimulating activity, Horm. Metab. Res. 13: 617 (1981).Google Scholar
  204. 204.
    L. R. Joshi and B.D. Weintraub, Naturally occurring forms of thyrotropin with low bioactivity and altered carbohydrate content act as competitive antagonists to more bioactive forms, Endocrinology 113: 2145 (1983).Google Scholar
  205. 205.
    T. F. Parsons and J.G. Pierce, Oligosaccharide moieties of glycoprotein hormones: Bovine lutropin resists enzymatic deglycosylation because of terminal 0-sulfated N-acetylhexosamines, Proc. Natl. Acad. Sci. U.S.A. 77:7089 (1980).Google Scholar
  206. 206.
    G. Hortin, M. Natowicz, J. Pierce, J. Baenziger, T. Parsons, and I. Boime, Metabolic labeling of lutropin with [35S] sulfate, Proc. Natl. Acad. Sci. U.S.A. 78:7468 (1981).Google Scholar
  207. 207.
    K. R. Anumula and 0.P. Bahl, Biosynthesis of lutropin in ovine pituitary slices: Incorporation of [35S] sulfate in carbohydrate units, Arch. Biochem. Biophys. 220:645 (1983).Google Scholar
  208. 208.
    N. Gesundheit, J. A. Magner, T. Chen, and B.D. Weintraub, Differential sulfation and sialylation of secreted mouse thyrotropin (TSH) subunits: Regulation by TSH-releasing hormone, Endocrinology 119: 455 (1986).Google Scholar
  209. 209.
    M. Mori, M. Murakami, T. Iriuchijima, H. Ishihara, I. Kobayashi, S. Kobayashi, and K. Wakabayashi, Alteration by thyrotropinreleasing hormone of heterogeneous components associated with thyrotrophin biosynthesis in the rat anterior pituitary gland, J. Endocrinol. 103:165 (1984).Google Scholar
  210. 210.
    L. Wide, Median charge and charge heterogeneity of human pituitary FSH, LH and TSH, Acta Endocrinol. (Copenh.) 109: 181 (1985).Google Scholar
  211. 211.
    S. C. Chappel, The presence of two species of FSH within hamster anterior pituitary glands as disclosed by Concanavalin A chromatography, Endocrinology 109: 935 (1981).Google Scholar
  212. 212.
    W. D. Peckham and E. Knobil, The effects of ovariectomy, extrogen replacement, and neuraminidase treatment on the properties of the adenohypophysial glycoprotein hormones of the rhesus monkey, Endocrinology 98: 1054 (1976).Google Scholar
  213. 213.
    M. Hattori, K. Ozawa, and K. Wakabayashi, Isoelectric properties, lectin binding characteristics and biological activities of neuraminidase-treated rat LH components, Acta Endocrinol. (Copenh.) 117: 73 (1988).Google Scholar
  214. 214.
    M. L. Sardanons, A.R. Solano and E.J. Podesta, Gonadotropin-releasing hormone action upon luteinizing hormone bioactivity in pituitary gland: Role of sulfation, J. Biol. Chem. 262:11149 (1987).Google Scholar
  215. 215.
    E. D. Green, I. Boime, and J.U. Baenziger, Differential processing of Asn-linked oligosaccharides on pituitary glycoprotein hormones: implications for biologic function, Mol. Cell. Biochem. 72:81 (1986).Google Scholar
  216. 216.
    E. D. Green and J.U. Baenziger, Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin, I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones, J. Biol. Chem. 263:25 (1988).Google Scholar
  217. 217.
    E. D. Green and J.U. Baenziger, Asparagine-linked oligosaccharides on lutropin follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones, J. Biol. Chem. 263:36 (1988).Google Scholar
  218. 218.
    J. U. Baenziger and E.D. Green, Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin, Biochim. Biophys. Acta 947:287 (1988).Google Scholar
  219. 219.
    P. L. Smith and J.U. Baenziger, A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones, Science 242: 930 (1988).Google Scholar
  220. 220.
    J. A. Magner and E. Papagiannes, The subcellular sites of sulfation of mouse thyrotropin and free alpha subunits: Studies employing subcellular fractionation and inhibitors of the intracellular translocation of proteins, Endocrine Res. 13 (4): 337 (1987).Google Scholar
  221. 221.
    E. D. Green, J. Gruenebaum, M. Bielinska, J.U. Baenziger, and I. Boime, Sulfation of lutropin oligosaccharides with a cell-free system, Proc. Nat. Acad. Sci. U.S.A. 81:5320 (1984).Google Scholar
  222. 222.
    J. A. Magner, Assay of sulfotransferase in subcellular fractions of hypothyroid mouse pituitary and liver tissue, Biochemical Medicine and Metabolic Biology 41: 81 (1989).Google Scholar
  223. 223.
    Y. Miura, M.J. Johnson, V.S. Perkel, and J.A. Magner (SPON: J. Sheinin), Qualitatively different forms of human TSH in sera of euthyroid, primary and central hypothyroid patients: analyses by ricin and McKenzie bioassay, Program of the 71st Annual Meeting of the Endocrine Society (abstract), 1989.Google Scholar
  224. 224.
    G. S. DeCherney, P.W. Gyves, C.R. Showalter, R.L. Winston, and N. Gesundheit, Hypothyroidism increases the sialylation and decreases the sulfation of secreted mouse thyrotropin, Program of the 70th Annual Meeting of the Endocrine Society, Abstract no. 353. (1988).Google Scholar
  225. 225.
    E. G. Berger, E. Buddecke, J.P. Kamerling, A. Kobata, J.C. Paulson, and J.F.G. Vliengenthart, Structure, biosynthesis and functions of glycoprotein glycans, Experienta 38: 1129 (1982).Google Scholar
  226. 226.
    J. Roth, Subcellular organization of glycosylation in mammalian cells, Biochim. Biophys. Acta 906:405 (1987).Google Scholar
  227. 227.
    H. Schachter, Coordination between enzyme specificity and intracellular compartmentation in the control of protein-bound oligosaccharide biosynthesis, Biol. Cell 51:133 (1984).Google Scholar
  228. 228.
    G. D. Longmore and H. Schachter, Product identification and substrate-specificity studies of the GDP-L-fucose: 2-acetamido-2-deoxy-ß-D-glucoside (fuc-asn-linked G1cNAc) 6-a-L-fucosyl-transferase in a Golgi-rich fraction from porcine liver, Carbohydr. Res. 100:365 (1982).Google Scholar
  229. 229.
    H. Yoshima, S. Takasaki, S. Ito-Mega and A. Kobata, Purification of almond emulsin a-L-fucosidase I by affinity chromatography, Arch. Biochem. Biophys. 194:394 (1979).Google Scholar
  230. 230.
    P. Bahl, Glycosidases of Aspergillus niger, J. Biol. Chem. 245:299 (1970).Google Scholar
  231. 231.
    R. A. DiCioccio, J.J. Barlow, and K.L. Matta, Substrate specificity and other properties of a-L-fucosidase from human serum, J. Biol. Chem. 257:714 (1982).Google Scholar
  232. 232.
    D. E. Goldberg and S. Kornfeld, Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation, J. Biol. Chem. 258:3159 (1983).Google Scholar
  233. 233.
    A. J. Chapman, J.T. Gallagher, C.G. Beardwell and S.M. Shalet, Variation in the core and branch carbohydrate sequences of serum glycoprotein hormone a-subunit as determined by lectin affinity chromatography, J. Endocrinol. 103:117 (1984).Google Scholar
  234. 234.
    A. Kobata, Structures, function, and transformational changes of the sugar chains of glycohormones, J. Cell. Biochem. 37:79 (1988).Google Scholar
  235. 235.
    G. Pelletier and R. Puviani, Detection of glycoproteins and autoradiographic localization of 3H-fucose in the thyroidectomy cells of rat anterior pituitary gland, J. Cell Biol. 56:600 (1973).Google Scholar
  236. 236.
    G. Pelletier, Autoradiographic studies of synthesis and intracellular migration of glycoproteins in the rat anterior pituitary gland, J. Cell Biol. 62:185 (1974).Google Scholar
  237. 237.
    H. D. Purves and W.E. Griesbach, The site of thyrotrophin and gonadotrophin production in the rat pituitary studied by McManus-Hotchkiss staining for glycoprotein, Endocrinology 49: 244 (1951).Google Scholar
  238. 238.
    N. S. Halmi, Two types of basophils in the rat pituitary: Thyrotrophs and gonadotrophs vs. beta and delta cells, Endocrinology 50: 140 (1952).Google Scholar
  239. 239.
    N. S. Halmi and W.D. Gude, The morphogenesis of pituitary tumors induced by radiothyroidectomy in the mouse and the effects of their transplantation on the pituitary body of the host, Am. J. Pathol. 30:403 (1954).Google Scholar
  240. 240.
    M. G. Farquhar and J.F. Rinehart, Cytologic alterations in the anterior pituitary gland following thyroidectomy: an electron microscope study, Endocrinology 55: 857 (1954).Google Scholar
  241. 241.
    V. B. Kamat, D.F. Hoelzyl Wallach, J. F.Crigler and A.J. Ladman, The intracellular localization of hormonal activity in transplantable thyrotopin-secreting pituitary tumors in mice, J. Biophys. Biochem. Cytol. 7: 219 (1960).Google Scholar
  242. 242.
    M. G. Farquhar, Processing of secretory products by cells of the anterior pituitary gland, in: Subcellular Organization and Function in Endocrine Tissues, Heller, H., and K. Lederis, eds., Cambridge University Press, Cambridge (1971).Google Scholar
  243. 243.
    S. Cuerdo-Rocha and D. Zambrano, The action of protein synthesis inhibitors and thyrotropin releasing factor on the ultrastructure of rat thyrotrophs, J. Ultrastruct. Res. 48:1 (1974).Google Scholar
  244. 244.
    S. Cuerdo-Rocha and D. Zambrano, Thyrotrophs of the rat anterior pituitary after different periods of thyroidectomy: a conventional and histochemical electron microscope study, J. Ultrastruct. Res. 49:312 (1974).Google Scholar
  245. 245.
    G. C. Moriarty and R.B. Tobin, An immunocytochemical study of TSH storage in rat thyroidectomy cells with and without D or L thyroxine treatment, J. Histochem. Cytochem. 24:1140 (1976).Google Scholar
  246. 246.
    J. A. Magner, W. Novak and E. Papagiannes, Subcellular localization of fucose incorporation into mouse thyrotropin and free a-subunits: studies employing subcellular fractionation and inhibitors of the intracellular translocation of proteins, Endocrinology 119: 1315 (1986).Google Scholar
  247. 247.
    Y. Miura, V. Perkel, and J.A. Magner, Use of lentil lectin and autoradiography to probe for RER-associated fucosylation in mouse thyrotrophs, Manuscript in preparation, (1989).Google Scholar
  248. 248.
    K. Kornfeld, M.L. Reitman, and R. Kornfeld, The carbohydrate-binding specificity of pea and lentil lectins, J. Biol. Chem. 256:6633 (1981).Google Scholar
  249. 249.
    J. A. Magner and E. Papagiannes, Studies of double-labeled mouse thyrotropin and free a-subunits to estimate relative fucose content, Proc. Soc. Exp. Biol. Med. 183:237 (1986).Google Scholar
  250. 250.
    N. Gesundheit, D.L. Fink, L.A. Silverman and B.D. Weintraub, Effect of thyrotropin-releasing hormone on the carbohydrate structure of secreted mouse thyrotropin: analysis by lectin affinity chromatography, J. Biol. Chem. 262:5197 (1987).Google Scholar
  251. 251.
    N. Gesundheit and B.D. Weintraub, Mechanisms and regulation of TSH glycosylation, Adv. Exp. Med. Biol. 205:87 (1986).Google Scholar
  252. 252.
    G. Griffiths, P. Quinn, and G. Warren, Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semlike Forest Virus, J. Cell Biol. 96: 835 (1983).PubMedCrossRefGoogle Scholar
  253. 253.
    A. M. Tartakoff, P. Vassali, and M. Detraz, Plasma cell immunoglobulin secretion. Arrest is accompanied by alterations of the Golgi complex, J. Exp. Med. 146:1332 (1977).Google Scholar
  254. 254.
    D. C. Johnson, and M.J. Schlesinger, Vesicular stomatitis virus and sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores, Virology 103: 407 (1980).Google Scholar
  255. 255.
    N. Uchida, H. Smilowitz, P.W. Ledger and M.L. Tanzer, Kinetic studies of the intracellular transport of procollagen and fibronectin in human fibroblasts, J. Biol. Chem. 255:8638 (1980).Google Scholar
  256. 256.
    B. P. Peters, M. Brooks, R.J. Hartle, R.F. Krzesicki, F. Perini and R.W. Ruddon, The use of drugs to dissect the pathway for secretion of the glycoprotein hormone chorionic gonadotropin by cultured human trophoblastic cells, J. Biol. Chem. 258:14505 (1983).Google Scholar
  257. 257.
    P. Ring, U. Bjorkman and R. Ekholm, Localization of the incorporation of 3H-galactose and 3H-sialic acid into thyroglobulin in relation to the block of intracellular transport induced by monensin, Cell Tissue Res. 250: 149 (1987).Google Scholar
  258. 258.
    A. D. Elbein, Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains, Ann. Rev. Biochem. 56:497 (1987).Google Scholar
  259. 259.
    G. Ponsin and R. Mornex, Control of thyrotropin glycosylation in normal rat pituitary cells in culture: Effect of thyrotropin-releasing hormone, Endocrinology 113: 549 (1983).Google Scholar
  260. 260.
    T. Hayashi, A. Takatsuki and G. Tamura, The action mechanism of brefeldin A. I. Growth recovery of Candida albicans by lipids from the action of brefeldin A, J. Antibiot. 27:65 (1974).Google Scholar
  261. 261.
    A. Takatsuki and G. Tamura, Brefeldin A, a specific inhibitor of intracellular translocation of vesicular stomatitis virus G protein: Intracellular accumulation of high-mannose type G protein and inhibition of its cell surface expression, Agric. Biol. Chem. 49:899 (1985).Google Scholar
  262. 262.
    Y. Misumi, Yu. Misumi, K. Miki, A. Takatsuki, G. Tamura, and Y. Ikehara, Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes, J. Biol. Chem. 261:11398 (1986).Google Scholar
  263. 263.
    K. Oda, S. Hirose, N. Takami, Y. Misumi, A. Takatsuki and Y. Ikehara, Brefeldin A arrests the intracellular transport of a precursor of complement C3 before its conversion site in rat hepatocytes, FEBS Lett. 214: 135 (1987).Google Scholar
  264. 264.
    J. A. Magner and E. Papagiannes, Blockade by brefeldin A of intracellular transport of secretory proteins in mouse pituitary cells: Effects on the biosynthesis of thyrotropin and free a-subunits, Endocrinology 122: 912 (1988).Google Scholar
  265. 265.
    V. S. Perkel, A.Y. Liu, Y. Miura and J.A. Magner, The effects of brefeldin A on the high mannose oligosaccharides of mouse thyrotropin, free a-subunits, and total glycoproteins, Endocrinology 123: 310 (1988).Google Scholar
  266. 266.
    V. S. Perkel, Y. Miura, and J.A. Magner, Brefeldin A inhibits oligosaccharide processing of glycoproteins in mouse hypo-thyroid pituitary tissue at several subcellular sites, Proc. Soc. Exp. Biol. Med. 190:286 (1989).Google Scholar
  267. 267.
    T. Fujiwara, K. Oda, S. Yokota, A. Takatsuki and Y. Ikehara, Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum, J. Biol. Chem. 263:18545 (1988).Google Scholar
  268. 268.
    J. F. Wilber and R.D. Utiger, Immunoassay studies of thyrotropin in rat pituitary glands and serum, Endocrinology 81: 145 (1967).Google Scholar
  269. 269.
    J. F. Wilber and R.D. Utiger, Thyrotropin incorporation of 14C-glucosamine by the isolated rat adenohypophysis, Endocrinology 84: 1316 (1969).Google Scholar
  270. 270.
    J. F. Wilber, Stimulation of 14C-glucosamine and 14C-alanine incorporation into thyrotropin by synthetic thyrotropin-releasing hormone, Endocrinology 89: 873 (1971).Google Scholar
  271. 271.
    L. Cacicedo, S.L. Pohl, and S. Reichlin, Effects of thyroid hormones and thyrotropin-releasing hormone on thyrotropin biosynthesis by mouse pituitary tumor cells in vitro, Endocrinology 108:1012 (1981).Google Scholar
  272. 272.
    M. C. Marshall,Jr., D. Williams and B.D. Weintraub, Regulation of de novo biosynthesis of thyrotropin in normal, hyper-plastic and neoplastic thyrotrophs, Endocrinology 108: 908 (1981).Google Scholar
  273. 273.
    B. D. Weintraub and N. Gesundheit, Thyroid-stimulating hormone synthesis and glycosylation: Clinical inplications, Thyroid Today 10:no. 1 (1987)Google Scholar
  274. 274.
    T. Taylor and B. D. Weintraub, Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone, Endocrinology 116: 1535 (1985).Google Scholar
  275. 275.
    T. Taylor and B.D. Weintraub, Thyrotropin (TSH)-releasing hormone regulation of TSH subunit biosynthesis and glycosylation in normal and hypothyroid rat pituitaries, Endocrinology 116: 1968 (1985).Google Scholar
  276. 276.
    T. Yora, S. Matsuzaki, Y. Kondo, and N. Ui, Changes in the contents of multiple components of rat pituitary thyrotropin in altered thyroid states, Endocrinology 104: 1682 (1979).Google Scholar
  277. 277.
    M. Mori, K. Ohshima, H. Fukuda, I. Kobayashi, K. Wakabayashi, Changes in the multiple components of rat pituitary TSH and TSH ß-subunit following thyroidectomy, Acta Endocr. 105: 49 (1984).Google Scholar
  278. 278.
    M. Mori, I. Kobayashi and S. Kobayashi, Thytrotrophin-releasing hormone does not accumulate glycosylated thyrotrophin, but changes heterogeneous forms of thyrotrophin within the rat anterior pituitary gland, J. Endocr. 109:227 (19,86).Google Scholar
  279. 279.
    T. Taylor, N. Gesundheit and B.D. Weintraub, Effects of in vivo bolus versus continuous TRH administration on TSH secretion. biosynthesis, and glycosylation in normal and hypothyroid rats, Mol. Cell. Endocr. 46:253 (1986).Google Scholar
  280. 280.
    C. Ronin and C. Caseti, Transfer of glucose in the biosynthesis of thyroid glycoproteins, Biochim. Biophys. Acta 674:58 (1981).Google Scholar
  281. 281.
    T. Osawa and T. Tsuji, Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins, Ann. Rev. Biochem. 56:21 (1987).Google Scholar
  282. 282.
    C. F. Brewer and L. Bhattacharyya, Concanavalin A interactions with asparagine-linked glycopeptides. The mechanisms of binding of oligomannose, bisected hybrid, and complex type carbohydrates, Glycoconjugate J. 5: 159 (1988).Google Scholar
  283. 283.
    M. M. Menezes-Ferreira, P.A. Petrick and B.D. Weintraub, Regulation of thyrotropin (TSH) bioactivity by TSH-releasing hormone and thyroid hormone, Endocrinology 118: 2125 (1986).Google Scholar
  284. 284.
    T. Taylor, N. Gesundheit, P.W. Gyves, D.M. Jacobowitz and B.D. Weintraub, Hypothalamic hypothyroidism caused by lesions in rat paraventricular nuclei alters the carbohydrate structure of secreted thyrotropin, Endocrinology 122: 283 (1988).Google Scholar
  285. 285.
    P. W. Gyves, N. Gesundheit, T. Taylor, J. Butler and B.D. Weintraub, Changes in thyrotropin (TSH) carbohydrate structure and response to TSH-releasing hormone during postnatal ontogeny: analysis by concanavalin A chromatography, Endocrinology 121: 133 (1987).Google Scholar
  286. 286.
    N. Gesundheit, P.A. Petrick, T. Taylor, E.H. Oldfield and B.D. Weintraub, Comparison of a pituitary TSH-secreting micro-versus macroadenoma, in: Frontiers in Thyroidology, G. Medeiros-Neto and E. Gaitan, eds., Plenum, New York (1986).Google Scholar
  287. 287.
    H. -Y. Lee, J. Suhl, A.E. Pekary and J.M. Hershman, Secretion of thyrotropin with reduced concanavalin-A-binding activity in patients with severe nonthyroidal illness, J. Clin. Endocrinol. Metab. 65:942 (1987).Google Scholar
  288. 288.
    V. S. Perkel, K.A. Papenberg, Y. Miura and J.A. Magner, Concanavalin A and lentil lectin binding characteristics of human thyrotropin from sera of hypothyroid and euthyroid subjects, Program of the Endocrine Society abstract (1989).Google Scholar
  289. 289.
    P. K. Manasco, D.L. Blithe, S.R. Rose, M.C. Gelato and B.C. Nisula, Evidence that TSH oligosaccharide branching is different in primary and central hypothyroidism, Program of the Endocrine Society (abstract), (1989).Google Scholar
  290. 290.
    E. V. Van Hall, J.L. Vaitukaitis and G.T. Ross, Immunological and biological activity of hCG following progressive desialylation, Endocrinology 88: 456 (1971).Google Scholar
  291. 291.
    E. V. Van Hall, J.L. Vaitukaitis, G.T. Ross, J.W. Hickman and G. Ashwell, Effects of progressive desialylation on the rate of disappearance of immunoreactive hCG from plasma in rats, Endocrinology 89: 11 (1971).Google Scholar
  292. 292.
    T. Tsuruhara, M.L. Dufau, J. Hickman and K.J. Catt, Biological properties of hCG after removal of terminal sialic acid and galactose residues, Endocrinology 91: 296 (1972).Google Scholar
  293. 293.
    B. C. Goverde, F.J.N. Veenkamp and J.D.H. Homan, Studies on human chorionic gonadotrophin. II. Chemical composition and its relation to biological activity, Acta Endocrinol. 59: 105 (1968).Google Scholar
  294. 294.
    M. L. Dufau, K.J. Catt and T. Tsuruhara, Retention of in vitro biologic activities by desialylated human luteinizing hormone and chorionic gonadotropin, Biochem. Biophys. Res. Commun. 44:1022 (1971).Google Scholar
  295. 295.
    W. R. Moyle, 0.P. Bahl and L. Marz, Role of the carbohydrate of human chorionic gonadotropin in the mechanism of hormone action, J. Biol. Chem. 205:9163 (1975).Google Scholar
  296. 296.
    C. P. Channing, C.N. Sakai and 0.P. Bahl, Role of the carbohydrate residues of human chorionic gonadotropin in binding and stimulation of adenosine 3’, 5’-monophosphate accumulation by porcine granulosa cells, Endocrinology 103: 341 (1978).Google Scholar
  297. 297.
    C. P. Channing and O.P. Bahl, Role of carbohydrate residues of human chorionic gonadotropin in stimulation of progesterone secretion by cultures of monkey granulosa cells, Biol. Reprod. 17:707 (1978).Google Scholar
  298. 298.
    N. R. Thotakura and 0.P. Bahl, Role of carbohydrate in human chorionic gonadotropin: Deglycosylation uncouples hormone-receptor complex and adenylate cyclase system, Biochem. Biophys. Res. Commun. 108:399 (1982).Google Scholar
  299. 299.
    J. M. Goverman, T.F. Parsons and J.G. Pierce, Enzymatic deglycosylation of the subunits of chorionic gonadotropin: Effects on formation of tertiary structures and biological activity, J. Biol. Chem. 257:15059 (1982).Google Scholar
  300. 300.
    M. R. Sairam and G.N. Bhargavi, A role for glycosylation of the a-subunit in transduction of biological signal in glycoprotein hormones, Science 229: 65 (1985).Google Scholar
  301. 301.
    P. Manjunath and M.R. Sairam, Biochemical, biological and immunological properties of chemically deglycosylated human chorionic gonadotropin, J. Biol. Chem. 257:7109 (1982).Google Scholar
  302. 302.
    H. C. Chen, Y. Shimohigashi, M.L. Dufau and K.J. Catt, Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin, J. Biol. Chem. 257:14446 (1982).Google Scholar
  303. 303.
    N. K. Kalyan and 0.P. Bahl, Role of carbohydrate in human chorionic gonadotropin: Effect of deglycosylation on the subunit interaction and on its in vitro and in vivo biological properties, J. Biol. Chem. 258:67 (1983).Google Scholar
  304. 304.
    H. T. Keutmann, P.J. Mcllroy, E.R. Bergert and R.J. Ryan, Chemically deglycosylated human chorionic gonadotropin subunits: Characterization and biological properties, Biochemistry 22: 3067 (1983).Google Scholar
  305. 305.
    M. R. Sairam and P. Manjunath, Hormonal antagonistic properties of chemically deglycosylated human choriogonadotropin, J. Biol. Chem. 258:445 (1983).Google Scholar
  306. 306.
    S. Amr, Y. Shimohigashi, P. Carayon,H.-C.Chen and B. Nisula, Sialic acid residues of the a-subunit are required for the thyrotropic activity of hCG, Biochem. Biophys. Res. Commun. 109:146 (1982).Google Scholar
  307. 307.
    M. R. Sairam, Deglycosylation of ovine pituitary lutropin subunits: Effects on subunit interaction and hormone activity, Arch. Biochem. Biophys. 204:199 (1980).Google Scholar
  308. 308.
    J. S. M. Hutchinson, The interpretation of pituitary gonadotrophin assays - a continuing challenge, J. Endocr. 118:169 (1988).Google Scholar
  309. 309.
    C. Mendelson, M.L. Dufau and K.J. Catt, Gonadotropin binding and stimulation of cAMP and testosterone production in isolated Leydig cells, J. Biol. Chem. 250:8818 (1975).Google Scholar
  310. 310.
    L. A. Cole, L.A. Metsch and H.E. Grotjan, Jr, Significant steroidogenic activity of luteinizing hormone is maintained after enzymatic removal of oligosaccharides, Mol. Endocrinol. 1:621 (1987).Google Scholar
  311. 331.
    P. E. Patton, F.O. Calvo, V.Y. Fujimoto, E.R. Bergert, R.D. Kempers and R.J. Ryan, The effect of deglycosylated human chorionic gonadotropin on corpora luteal funtion in healthy women, Feril. Steril. 49:620 (1988).Google Scholar
  312. 312.
    L. Liu, J.L. Southers, S.M. Banks, D.L. Blithe, R.E. Wehmann, J.H. Brown, H.-C. Chen and B.C. Nisula, Stimulation of testosterone production in the cynomolgus monkey in vivo by deglycosylated and desialylated human choriogonadotropin, Endocrinology 124: 175 (1989).Google Scholar
  313. 313.
    N. A. Takai, S. Filetti and B. Rapoport, Studies on the bioactivity of radiolabeled, highly-purified bovine thyrotropin, Biochem. Biophys. Res. Commun. 97:566 (1980).Google Scholar
  314. 314.
    N. A. Takai, S. Filetti and B. Rapoport, Studies on the bioactivity of radioiodinated highly purified bovine thyrotropin: analytical polyacrylamide gel electrophoresis, Endocrinology 109: 1144 (1981).Google Scholar
  315. 315.
    P. A. Dahlberg, P.A. Petrick, M. Nissim, M.M. Menezes-Ferreira and B.D. Weintraub, Intrinsic bioactivity of thyrotropin in human serum is inversely correlated with thyroid hormone concentrations: application of a new bioassay using the FRTL-5 rat thyroid cell strain J. Clin. Invest. 79:1388 (1987).Google Scholar
  316. 316.
    M. I. Berman, C.G. Thomas, P. Manjunath, M.R. Sairam and S.N. Nayfeh, The role of the carbohydrate moiety in thyrotropin action, Biochem. Biophys. Res. Commun. 133:680 (1985).Google Scholar
  317. 317.
    S. M. Amir, K. Kubota, D. Tramontano, S.H. Ingbar and H.T. Keutmann, The carbohydrate moiety of bovine thyrotropin is essential for full bioactivity but not for receptor recognition, Endocrinology 120: 345 (1987).PubMedGoogle Scholar
  318. 318.
    S. Amr, M.M. Menezes-Ferreira, Y. Shimohigashi, H.C. Chen, B. Nisula and B.D. Weintraub, Activities of deglycosylated thyrotropin at the thyroid membrane receptor-adenylate cyclase system, J. Endocrinol. Invest. 8:537 (1986).Google Scholar
  319. 319.
    M. Nissim, K.-0. Lee, P.A. Petrick, P.A. Dahlberg and B.D. Weintraub, A sensitive thyrotropin (TSH) bioassay based on iodide uptake in rat FRTL-5 thyroid cells: Comparison with the adenosine 3’, 5’-monophosphate response to human serum TSH and enzymatically deglycosylated bovine and human TSH, Endocrinology 121: 1278 (1987).Google Scholar
  320. 320.
    S. Costagliola, A.-M. Madec, M.M. Benkirane, J. Orgiazzi and P. Carayon, Monoclonal antibody approach to the relationship between immunological structure and biological activity of thyrotropin, Mol. Endocr. 2:613 (1988).Google Scholar
  321. 321.
    J. M. Bidart, F. Troalen, G.R. Bousfield, C. Bohuon and D. Bellet, Monoclonal antibodies directed to human and equine chorionic gonadotropins as probes for the topographic analysis of epitopes on the human a-subunit, Endocrinology 124: 923 (1989).Google Scholar
  322. 322.
    G. Faglia, L. Bitensky, A. Pinchera, C. Ferrari, A. Paracchi, P. Beck-Peccoz, B. Ambrosi and A. Spada, Thyrotropin secretion in patients with central hypothyroidism: Evidence for reduced biological activity of immunoreactive thyrotropin, J. Clin. Endocrinol. Metab. 48:989 (1979).Google Scholar
  323. 323.
    G. Faglia, P. Beck-Peccoz, M. Ballabio and C. Nava, Excess of ß-subunit of thyrotropin (TSH) in patients with idiopathic central hypothyroidism due to the secretion of TSH with reduced biological activity, J. Clin. Endocrinol. Metab. 56:908 (1983).Google Scholar
  324. 324.
    P. Beck-Peccoz, G. Piscitelli, S. Amr, M. Ballabio, M. Bassetti, G. Giannattasio, A. Spada, M. Nissim, B.D. Weintraub and G. Faglia, Endocrine, biochemical, and morphological studies of a pituitary adenoma secreting growth hormone, thyrotropin (TSH), and a-subunit: Evidence for secretion of TSH with increased bioactivity, J. Clin. Endocrinol. Metab. 62:704 (1986).Google Scholar
  325. 325.
    I. M. Spitz, D. LeRoith, H. Hirsch, P. Carayon, F. Pekonen, Y. Liel, R. Sobel, Z. Chorer and B. Weintraub, Increased highmolecular-weight thyrotropin with impaired biologic activity in a euthyroid man, N. Eng. J. Med. 304:278 (1981).Google Scholar
  326. 326.
    S. A. D’Angelo, Disappearance rate of exogenous thyrotrophin from the blood of normal and hypophysectomized rats, Endocrinology 48: 249 (1951).Google Scholar
  327. 327.
    M. Sonenberg, A.S. Keaton, W.L. Money, R.W. Rawson, Radioactive thyrotropic hormone preparations, J. Clin. Endocrinol. Metab. 12:1269 (1952).Google Scholar
  328. 328.
    A. A. H. Kassenaar, L.D. Lameyer and A. Querido, The distribution of injected heterologous thyrotrophic hormone in the rat, Acta Endocrinol. (Copenh.) 21: 32 (1956).Google Scholar
  329. 329.
    H. A. Levey and D.H. Solomon, Studies on the metabolism of thyrotropin, Endocrinology 60: 118 (1957).Google Scholar
  330. 330.
    J. L. Bakke and N.L. Lawrence, Disappearance rate and distribution of exogenous thyrotropin in the rat, Endocrinology 71: 43 (1962).Google Scholar
  331. 331.
    A. Kojima, J.M. Hershman, M. Azukizawa and J.J. DiStefano, Quantification of the pituitary-thyroid axis in pregnant rats, Endocrinology 95: 599 (1974).Google Scholar
  332. 332.
    E. C. Ridgway, B.D. Weintraub and F. Maloof, Metabolic clearance and production rates of human thyrotropin, J. Clin. Invest. 53:895 (1974).Google Scholar
  333. 333.
    E. C. Ridgway, F.R. Singer, B.D. Weintraub, L. Lorenz and F. Maloof, Metabolism of human thyrotropin in the dog, Endocrinology 95: 1181 (1971).Google Scholar
  334. 334.
    M. I. Surks and B.M. Lifschitz, Biphasic thyrotropin suppression in euthyroid and hypothyroid rats, Endocrinology 101: 769 (1977).Google Scholar
  335. 335.
    J. E. Silva and P.R. Larsen, Peripheral metabolism of homologous thyrotropin in euthyroid and hypothyroid rats: acute effects of thyrotropin-releasing hormone, triiodothyronine, and thyroxine, Endocrinology 102: 1783 (1978).Google Scholar
  336. 336.
    Spira, A. Birdenfeld, J. Gross and A. Gordon, TSH synthesis and release in the thyroidectomized rat: a) effect of short-and long-term hypothyroidism, Acta Endocrinol. (Copenh.) 92: 489 (1979).Google Scholar
  337. 337.
    T. Lemarchand-Beraud and C. Berthier, Effects of graded doses of triiodothyronine on TSH synthesis and secretion rates in hypothyroid rats, Acta Endocrinol. (Copenh.) 97: 74 (1981).Google Scholar
  338. 338.
    S. Fujimoto and G.A. Hedge, Altered pituitary-thyroid function in the Brattleboro rat with diabetes insipidus, Endocrinology 110: 1628 (1981).Google Scholar
  339. 339.
    R. M. Pastor and T. Jolin, Peripheral metabolism and secretion rate of thyrotropin in streptozotocin-diabetic rats, Endocrinology 112: 1454 (1983).Google Scholar
  340. 340.
    J. M. Connors, W.J. DeVito and G.A. Hedge, The effects of the duration of severe hypothyroidism and aging on the metabolic clearance rate of thyrotropin (TSH) and the pituitary TSH response to TSH-releasing hormone, Endocrinology 114: 1930 (1984).Google Scholar
  341. 341.
    R. B. Constant and B.D. Weintraub, Differences in the metabolic clearance of pituitary and serum thyrotropin (TSH) derived from euthyroid and hypothyroid rats: effects of chemical deglycosylation of pituitary TSH, Endocrinology 119: 2720 (1986).Google Scholar
  342. 342.
    A. G. Morell, G. Greogoriadis, H. Scheinberg, J. Hickman and G. Ashwell, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246:1461 (1971).Google Scholar
  343. 343.
    R. E. Wehmann and B.C. Nisula, Metabolic and renal clearance rates of purified human chorionic gonadotropin, J. Clin. Invest. 68:184 (1981).Google Scholar
  344. 344.
    S. C. Chappel, A. Ulloa-Aguierre and C. Coutifaris, Biosynthesis and secretion of follicle-stimulating hormone, Endocr. Rev. 4: 179 (1983).CrossRefGoogle Scholar
  345. 345.
    G. P. Lefort, J.M. Stolk and B.C. Nisula, Evidence that desialylation and uptake by hepatic receptors for galactose-terminated glycoproteins are immaterial to the metabolism of human choriogonadotropin in the rat, Endocrinology 115: 1551 (1984).Google Scholar
  346. 346.
    D. L. Blithe and B.C. Nisula, Similarity of the clearance rates of free a-subunit and a-subunit dissociated from intact human chorionic gonadotropin, despite differences in sialic acid contents, Endocrinology 121: 1215 (1987).Google Scholar
  347. 347.
    C. Rosa, S. Amr, S. Birken, R. Wehmann and B. Nisula, Effects of desialylation of human chorionic gonadotropin on its metabolic clearance rate in humans, J. Clin. Endocrinol. 59:1215 (1984).Google Scholar
  348. 348.
    M. R. Sairam, Gonadotropic hormones: relationship between structure and function with emphasis on antagonists, in: Hormonal Proteins and Peptides, C. H. Li, ed., Academic, New York (1983).Google Scholar
  349. 349.
    W. L. Gordon and D.N. Ward, Structural aspects of luteinizing hormone actions. in: Luteinizing Hormone Action and Receptors, M. Ascoli, ed., CRC Press, Boca Raton (1985).Google Scholar
  350. 350.
    J. A. Weare and L.E. Reichert, Jr, Studies with carbodiimide cross-linked derivatives and implication for interaction with the receptors in testis, J. Biol. Chem. 254:6972 (1979).Google Scholar
  351. 351.
    R. J. Ryan, M.C. Charlesworth, D.J. McCormick, R.P. Milius and H.T. Keutmann, The glycoprotein hormones: recent studies of structure-function relationships. FASEB J. 2: 2661 (1988).Google Scholar
  352. 352.
    J. C. Morris, III, N.-S. Jiang, M.C. Charlesworth, D.J. McCormick and R.J. Ryan, The effects of synthetic alpha subunit peptides on thyrotropin interaction with its receptor, Endocrinology 123: 456 (1988).Google Scholar
  353. 353.
    J. C. Morris, III, N.-S. Jiang, I.D. Hay, M.C. Charlesworth, D.J. McCormick and R.J. Ryan, The effects of synthetic alpha-subunit peptides on thyroid-stimulating immunoglobulin activity, J. Clin. Endocrinol.Metab. 6 7:707 (1988).Google Scholar
  354. 354.
    M. M. Matzuk, J.L. Keene and I. Boime, Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction, J. Biol. Chem. 264:2409 (1989).Google Scholar
  355. 355.
    S. Watanabe, Y. Hayashizaki, Y. Endo, M. Hirono, N. Takimot, M. Tamaki, H. Teraoka, K. Miyai and K. Matsubara, Production of human thyroid-stimulating hormone in Chinese Hamster Ovary Cells, Biochem. Biophys. Res. Commun. 149:1149 (1987).Google Scholar
  356. 356.
    M. C. Murray, V.P. Bhavanandan and E.A. Davidson, Modification of sialyl residues of gonadotropic hormones by reductive amination. Influence on biological activity and circulating half-life, Glycoconjugate J. 5: 485 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • James A. Magner
    • 1
  1. 1.Michael Reese HospitalUniversity of ChicagoChicagoUSA

Personalised recommendations