Thyroid Specific Gene Expression

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 261)


The biosynthesis of thyroid hormones requires the iodination and coupling of two tyrosine residues. During evolution specialized cells within the thyroid gland have developed to accomplish this task. The follicular cells of the thyroid gland are arranged in a characteristic tridimensional structure which consists of a sphere of follicular cells surrounding a lumen. Iodine is transported from the bloodstream into the follicular cells by a thyroid specific iodine channel, and subsequently reaches the lumen of the follicle. Two further thyroid specific functions are present in the follicle to assist hormone synthesis: a thyroid specific peroxidase (TPO) and thyroglobulin (Tg). The peroxidase has two functions: it catalyzes the incorporation of iodine onto some of the tyrosyl residues of the thyroglobulin molecule and it is required for the coupling of a subset of the iodinated residues to form the hormones. Upon interaction of Thyroid Stimulating Hormone (TSH) with its receptor the modified thyroglobulin is reabsorbed from the follicular lumen, then it is degraded within the follicular cells and free hormone is released in the bloodstream1.


Thyroid Stimulate Hormone Follicular Cell Thyroid Cell Chloramphenicol Acetyl Transferase Thyroglobulin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Taurog, Hormone synthesis: thyroid iodine metabolism, in: “Werner’s The Thyroid,” S. H. Ingbar, and L. E Bravermann, eds., J.B. Lippincott Company, Philadelphia (1986).Google Scholar
  2. 2.
    H. Edelhoc, and J. Robbins, Thyroglobulin: Chemistry and Biosynthesis, in: “Werner’s The Thyroid,” S. H. Ingbar, and L. E. Braverman, eds., J.B. Lippincott Company, Philadelphia (1986).Google Scholar
  3. 3.
    F. S. Ambesi-Impiombato, L. A. M. Parks, and H. G. Coon, Culture of hormone-dependent functional epithelial cells from rat thyroids, Proc. Natl. Acad. Sci. USA. 77: 3455 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Di Lauro, S. Obici, A. Acquaviva, and C. Alvino, Construction of recombinant plasmids containing rat thyroglobulin mRNA sequences, Gene. 19: 117 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    V. E. Avvedimento, A. Monticelli, D. Tramontano, C. Polistina, L. Nitsch, and R. Di Lauro, Differential expression of the thyroglobulin gene in normal and transformed thyroid cells, Eur. 1. Biochem. 149: 467 (1985).CrossRefGoogle Scholar
  6. 6.
    A. M. Musti, V. E. Avvedimento, C. Polistina, M. V. Ursini, S. Obici, L. Nitsch, S. Cocozza, and R. Di Lauro, The complete structure of the rat thyroglobulin gene, Proc. Natl. Acad. Sci. USA. 83: 323 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Banerji, L. Olson, and W. Schaffner, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell. 33: 729 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    S. D. Gillies, S. L. Morrison, and S. Tonegawa, A tissue-specific transcription enhancer is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell. 33: 717 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Queen, and D. Baltimore, Immunoglobulin gene transcription is activated by downstream sequence elements, Cell. 33: 741–748 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    M. D. Walker, T. Edlund, A. M. Boulet, and W. J. Rutter, Cell-specific expression controlled by the 5’-flanking region of insulin and chymotrypsin genes, Nature. 306: 557 (1983).Google Scholar
  11. 11.
    C. Gorman, L. F. Moffat, and B. H. Howard, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Mol. Cell. Biol. 2: 1044 (1982).PubMedGoogle Scholar
  12. 12.
    F. S. Ambesi-Impiombato, and H. G. Coon, Thyroid cells in culture, Int. Rev. Cytol. 12, Suppl. 10: 163 (1979).Google Scholar
  13. 13.
    E. M. Volpert, and A. P. Prezyna, Transplantable thyroid tumor in rats - iodoamino acid distribution in successive tumor generations, Acta Endocrinol. 85: 93 (1977).PubMedGoogle Scholar
  14. 14.
    S. P. Nissley, P. A. Short, M. M. Rechler, J. M. Podskalny, and H. G. Coon, Proliferation of buffalo rat liver cells in serum-free medium does not depend upon multiplication-stimulation activity (MSA), Cell. 11: 441 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    A. M. Musti, M. V. Ursini, M. V. Avvedimento, V. Zimarino, and R. Di Lauro, A cell type specific factor recognizes the rat thyroglobulin promoter, Nucleic Acids Res. 15: 8149 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Cristophe, B. Cabrer, A. Bacolla, H. Targovnik, V. Pohl, and G. Vassart, An unusually long poly(purine)-poly(pyrimidine) sequence is located upstream from the human thyroglobulin gene, Nucleic Acids Res. 13: 5127 (1985).CrossRefGoogle Scholar
  17. 17.
    G. de Martinoff, V. Pohl, L. Mercken, G. van Ommen, and G. Vassart, Structural organization of the bovine thyroglobulin gene and of its 5’-flanking region, Eur. J. Biochem. 164: 591 (1987).CrossRefGoogle Scholar
  18. 18.
    D. Civitareale, L. Ghibelli, and R. Di Lauro, Partial purification of a thyroid specific protein recognizing the thyroglobulin promoter., in: “Molecular biology approaches to thyroid research,” Loos, U.,Wartofsky, L. eds, Georg Thieme Verlag Stuttgart-New York (1987).Google Scholar
  19. 19.
    W. Kramer, M. Kramer, V. Drutsa, H-W Jansen, B. Kramer, M. Pflugfelder, and H-J Fritz, The gapped duplex DNA approach to oligonucleotide-directed mutant construction, Nucleic Acids Res. 12: 9441 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Botchan, W. Topp, and J. Sambrook, The arrengement of simian virus 40 sequences in the DNA of transformed cells, Cell. 9: 269 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    Nakajima, M. Horikoshi, and R. G. Roeder, Factors involved in specific transcription by mammalian RNA polymerase II: Purification, genetic specificity and TATA box promoter interactions of TFIID, Mol. Cell. Biol. 8: 4028 (1988).PubMedGoogle Scholar
  22. 22.
    G. Colletta, A. Pinto, P. P. Di Fiore, A. Fusco, M. Ferrentino, V. E. Avvedimento, N. Tsuchida, and G. Vecchio, Dissociation between transformed and differentiated phenotype in rat thyroid epithelial cells after transformation with a temperature sensitive mutant of the Kirsten murine sarcoma virus, Mol. Cell. Biol. 3: 2099 (1983).PubMedGoogle Scholar
  23. 23.
    A. Fusco, G. Portella, P. P. Di Fiore, M. T. and G. Vecchio, A mos oncogene-containing retrovirus, myeloproliferative sarcoma virus, transforms rat thyroid epithelial cells and irreversibly blocks their differentiation pattern, J. Virol. 56: 284 (1985).PubMedGoogle Scholar
  24. 24.
    V. E., Avvedimento, A. M. Musti, M. Bonapace, A. Fusco, and R. Di Lauro, Neoplastic transformation inactivates specific trans-acting factor(s) required for the expression of the thyroglobulin gene, Proc. Natl. Acad. Sci. USA. 85: 1744 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Kimura, T. Kotani, W. O. McBride, K. Umeki, K. Hirai, T. Nakayama, and S. Ohtaki, Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNA, Proc. Natl. Acad. Sci. USA. 84: 5555 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Kimura, Y. Hong, T. Kotani, S. Ohtaki, and F. Kikkawa, Structure of the human peroxidase gene: comparison and relationhsip to the human myeloperoxidase gene, Biochemistry. in press: (1989).Google Scholar
  27. 27.
    V. E., Tramontano, D., Ursini, M.V., Monticelli, A. Avvedimento and Di Lauro,R, The level of thyroglobulin mRNA is regulated by TSH both in vitro and in vivo, Biochem. Biophys. Res. Commun. 122: 472 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    B. Van Heuverswyn, C. Streydio, H. Brocas, S. Refetoff, S. Dumont, J. Dumont, and G. Vassart, Thyrotropin controls transcription of the thyroglobulin gene, proc. Natl. Acad. Sci. USA. 81: 5941 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Vassart, A. Bacolla, H. Brocas, D. Cristophe, G. de Martynoff, A. Leriche, J. Parma, V. Pohl, H. Targovnik, and B. van Heuverswyn, Structure, expression and regulation of the thyroglobulin gene, Mol. Cell. Endocrinol. 40: 89 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Santisteban, L. D. Kohn, and R. Di Lauro, Thyroglobulin gene expression is regulated by insulin and isulin-like growth factor I, as well as thyrotropin, in FRTL-5 thyroid cells, J Biol. Chem. 262:4048 (1987).Google Scholar
  31. 31.
    P. P. Roger, B. van Heuverswyn, C. Lambert, S. Reuse, G. Vassart, and J. E. Dumont, Antagonistic effects of thyrotropin and epidermal growth factor on thyroglobulin mRNA level in cultured thyroid cells, Eur. J. Biochem. 152: 239 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Kawaoi, and M. Tsuneda, Functional development and maturation of the rat thyroid gland in the foetal and newborn period: an immunoistochemical study., Acta Endocrinol. 108: 518 (1985).PubMedGoogle Scholar
  33. 33.
    L. Remy, M. Michel-Bechet, A. M. Athouel-Haon, S. Magre, C. Cataldo, and A. Jost, Development of the thyroid gland in the rat fetus in vivo. An ultrastructural and radioautographic study., Anat. Microsc. Morphol. Exp. 69: 91 (1980).Google Scholar
  34. 34.
    H. A. Ingraham, R. Chen, H. J. Mangalam, H. P. Elsholtz, S. E. Flynn, C. R. Lin, D. M. Simmons, L. Swanson, and M. G. Rosenfeld, A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype, Cell. 55: 519 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    M. M. Muller, S. Ruppert, W. Shaffner, and P. Mathias, A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homeobox protein, Nature. 336: 544 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    C. Fletcher, N. Heintz, and R. G. Roeder, Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene, Cell. 51: 773 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Singh, R. Sen, D. Baltimore, and P. A. Sharp, A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes, Nature. 319: 154 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    P. A. Bauerle, and D. Baltimore, Activation of DNA binding activity in an apparent cytoplasmic precursor of the NF-kB transcription factor, Cell. 53: 211 (1988).CrossRefGoogle Scholar
  39. 39.
    P. A. Bauerle, and D. Baltimore, IkB: a specific inhibitor of the NF-kB transcription factor, Science. 242: 540 (1988).CrossRefGoogle Scholar
  40. 40.
    M. Lenardo, J. W. Pierce, and D. Baltimore, Protein-binding sites in Ig gene enhancers determine trascriptional activity and inducibility, Science. 236: 1573 (1987).PubMedCrossRefGoogle Scholar
  41. 41.
    M. L. Atchison, and R. P. Perry, The role of the k enhancer and its binding factor NF-kB in the developmental regulation of k gene transcription, Cell. 48: 121 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    M. R. Wabl, and P. D. Burrows, Epression of immunoglobulin heavy chain at a high level in the absence of a proposed immunoglobulin enhancer in cis, Proc. Natl. Acad. Sci. USA. 81: 2452 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations