Skip to main content

Thyroid Specific Gene Expression

  • Chapter
Control of the Thyroid Gland

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 261))

  • 173 Accesses

Abstract

The biosynthesis of thyroid hormones requires the iodination and coupling of two tyrosine residues. During evolution specialized cells within the thyroid gland have developed to accomplish this task. The follicular cells of the thyroid gland are arranged in a characteristic tridimensional structure which consists of a sphere of follicular cells surrounding a lumen. Iodine is transported from the bloodstream into the follicular cells by a thyroid specific iodine channel, and subsequently reaches the lumen of the follicle. Two further thyroid specific functions are present in the follicle to assist hormone synthesis: a thyroid specific peroxidase (TPO) and thyroglobulin (Tg). The peroxidase has two functions: it catalyzes the incorporation of iodine onto some of the tyrosyl residues of the thyroglobulin molecule and it is required for the coupling of a subset of the iodinated residues to form the hormones. Upon interaction of Thyroid Stimulating Hormone (TSH) with its receptor the modified thyroglobulin is reabsorbed from the follicular lumen, then it is degraded within the follicular cells and free hormone is released in the bloodstream1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Taurog, Hormone synthesis: thyroid iodine metabolism, in: “Werner’s The Thyroid,” S. H. Ingbar, and L. E Bravermann, eds., J.B. Lippincott Company, Philadelphia (1986).

    Google Scholar 

  2. H. Edelhoc, and J. Robbins, Thyroglobulin: Chemistry and Biosynthesis, in: “Werner’s The Thyroid,” S. H. Ingbar, and L. E. Braverman, eds., J.B. Lippincott Company, Philadelphia (1986).

    Google Scholar 

  3. F. S. Ambesi-Impiombato, L. A. M. Parks, and H. G. Coon, Culture of hormone-dependent functional epithelial cells from rat thyroids, Proc. Natl. Acad. Sci. USA. 77: 3455 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. R. Di Lauro, S. Obici, A. Acquaviva, and C. Alvino, Construction of recombinant plasmids containing rat thyroglobulin mRNA sequences, Gene. 19: 117 (1982).

    Article  PubMed  Google Scholar 

  5. V. E. Avvedimento, A. Monticelli, D. Tramontano, C. Polistina, L. Nitsch, and R. Di Lauro, Differential expression of the thyroglobulin gene in normal and transformed thyroid cells, Eur. 1. Biochem. 149: 467 (1985).

    Article  CAS  Google Scholar 

  6. A. M. Musti, V. E. Avvedimento, C. Polistina, M. V. Ursini, S. Obici, L. Nitsch, S. Cocozza, and R. Di Lauro, The complete structure of the rat thyroglobulin gene, Proc. Natl. Acad. Sci. USA. 83: 323 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. J. Banerji, L. Olson, and W. Schaffner, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell. 33: 729 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. S. D. Gillies, S. L. Morrison, and S. Tonegawa, A tissue-specific transcription enhancer is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell. 33: 717 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. C. Queen, and D. Baltimore, Immunoglobulin gene transcription is activated by downstream sequence elements, Cell. 33: 741–748 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. M. D. Walker, T. Edlund, A. M. Boulet, and W. J. Rutter, Cell-specific expression controlled by the 5’-flanking region of insulin and chymotrypsin genes, Nature. 306: 557 (1983).

    Google Scholar 

  11. C. Gorman, L. F. Moffat, and B. H. Howard, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Mol. Cell. Biol. 2: 1044 (1982).

    PubMed  CAS  Google Scholar 

  12. F. S. Ambesi-Impiombato, and H. G. Coon, Thyroid cells in culture, Int. Rev. Cytol. 12, Suppl. 10: 163 (1979).

    CAS  Google Scholar 

  13. E. M. Volpert, and A. P. Prezyna, Transplantable thyroid tumor in rats - iodoamino acid distribution in successive tumor generations, Acta Endocrinol. 85: 93 (1977).

    PubMed  CAS  Google Scholar 

  14. S. P. Nissley, P. A. Short, M. M. Rechler, J. M. Podskalny, and H. G. Coon, Proliferation of buffalo rat liver cells in serum-free medium does not depend upon multiplication-stimulation activity (MSA), Cell. 11: 441 (1977).

    Article  PubMed  CAS  Google Scholar 

  15. A. M. Musti, M. V. Ursini, M. V. Avvedimento, V. Zimarino, and R. Di Lauro, A cell type specific factor recognizes the rat thyroglobulin promoter, Nucleic Acids Res. 15: 8149 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. D. Cristophe, B. Cabrer, A. Bacolla, H. Targovnik, V. Pohl, and G. Vassart, An unusually long poly(purine)-poly(pyrimidine) sequence is located upstream from the human thyroglobulin gene, Nucleic Acids Res. 13: 5127 (1985).

    Article  Google Scholar 

  17. G. de Martinoff, V. Pohl, L. Mercken, G. van Ommen, and G. Vassart, Structural organization of the bovine thyroglobulin gene and of its 5’-flanking region, Eur. J. Biochem. 164: 591 (1987).

    Article  Google Scholar 

  18. D. Civitareale, L. Ghibelli, and R. Di Lauro, Partial purification of a thyroid specific protein recognizing the thyroglobulin promoter., in: “Molecular biology approaches to thyroid research,” Loos, U.,Wartofsky, L. eds, Georg Thieme Verlag Stuttgart-New York (1987).

    Google Scholar 

  19. W. Kramer, M. Kramer, V. Drutsa, H-W Jansen, B. Kramer, M. Pflugfelder, and H-J Fritz, The gapped duplex DNA approach to oligonucleotide-directed mutant construction, Nucleic Acids Res. 12: 9441 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. M. Botchan, W. Topp, and J. Sambrook, The arrengement of simian virus 40 sequences in the DNA of transformed cells, Cell. 9: 269 (1976).

    Article  PubMed  CAS  Google Scholar 

  21. Nakajima, M. Horikoshi, and R. G. Roeder, Factors involved in specific transcription by mammalian RNA polymerase II: Purification, genetic specificity and TATA box promoter interactions of TFIID, Mol. Cell. Biol. 8: 4028 (1988).

    PubMed  CAS  Google Scholar 

  22. G. Colletta, A. Pinto, P. P. Di Fiore, A. Fusco, M. Ferrentino, V. E. Avvedimento, N. Tsuchida, and G. Vecchio, Dissociation between transformed and differentiated phenotype in rat thyroid epithelial cells after transformation with a temperature sensitive mutant of the Kirsten murine sarcoma virus, Mol. Cell. Biol. 3: 2099 (1983).

    PubMed  CAS  Google Scholar 

  23. A. Fusco, G. Portella, P. P. Di Fiore, M. T. and G. Vecchio, A mos oncogene-containing retrovirus, myeloproliferative sarcoma virus, transforms rat thyroid epithelial cells and irreversibly blocks their differentiation pattern, J. Virol. 56: 284 (1985).

    PubMed  CAS  Google Scholar 

  24. V. E., Avvedimento, A. M. Musti, M. Bonapace, A. Fusco, and R. Di Lauro, Neoplastic transformation inactivates specific trans-acting factor(s) required for the expression of the thyroglobulin gene, Proc. Natl. Acad. Sci. USA. 85: 1744 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. S. Kimura, T. Kotani, W. O. McBride, K. Umeki, K. Hirai, T. Nakayama, and S. Ohtaki, Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNA, Proc. Natl. Acad. Sci. USA. 84: 5555 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. S. Kimura, Y. Hong, T. Kotani, S. Ohtaki, and F. Kikkawa, Structure of the human peroxidase gene: comparison and relationhsip to the human myeloperoxidase gene, Biochemistry. in press: (1989).

    Google Scholar 

  27. V. E., Tramontano, D., Ursini, M.V., Monticelli, A. Avvedimento and Di Lauro,R, The level of thyroglobulin mRNA is regulated by TSH both in vitro and in vivo, Biochem. Biophys. Res. Commun. 122: 472 (1984).

    Article  PubMed  Google Scholar 

  28. B. Van Heuverswyn, C. Streydio, H. Brocas, S. Refetoff, S. Dumont, J. Dumont, and G. Vassart, Thyrotropin controls transcription of the thyroglobulin gene, proc. Natl. Acad. Sci. USA. 81: 5941 (1984).

    Article  PubMed  Google Scholar 

  29. G. Vassart, A. Bacolla, H. Brocas, D. Cristophe, G. de Martynoff, A. Leriche, J. Parma, V. Pohl, H. Targovnik, and B. van Heuverswyn, Structure, expression and regulation of the thyroglobulin gene, Mol. Cell. Endocrinol. 40: 89 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. P. Santisteban, L. D. Kohn, and R. Di Lauro, Thyroglobulin gene expression is regulated by insulin and isulin-like growth factor I, as well as thyrotropin, in FRTL-5 thyroid cells, J Biol. Chem. 262:4048 (1987).

    Google Scholar 

  31. P. P. Roger, B. van Heuverswyn, C. Lambert, S. Reuse, G. Vassart, and J. E. Dumont, Antagonistic effects of thyrotropin and epidermal growth factor on thyroglobulin mRNA level in cultured thyroid cells, Eur. J. Biochem. 152: 239 (1985).

    Article  PubMed  CAS  Google Scholar 

  32. A. Kawaoi, and M. Tsuneda, Functional development and maturation of the rat thyroid gland in the foetal and newborn period: an immunoistochemical study., Acta Endocrinol. 108: 518 (1985).

    PubMed  CAS  Google Scholar 

  33. L. Remy, M. Michel-Bechet, A. M. Athouel-Haon, S. Magre, C. Cataldo, and A. Jost, Development of the thyroid gland in the rat fetus in vivo. An ultrastructural and radioautographic study., Anat. Microsc. Morphol. Exp. 69: 91 (1980).

    CAS  Google Scholar 

  34. H. A. Ingraham, R. Chen, H. J. Mangalam, H. P. Elsholtz, S. E. Flynn, C. R. Lin, D. M. Simmons, L. Swanson, and M. G. Rosenfeld, A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype, Cell. 55: 519 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. M. M. Muller, S. Ruppert, W. Shaffner, and P. Mathias, A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homeobox protein, Nature. 336: 544 (1988).

    Article  PubMed  CAS  Google Scholar 

  36. C. Fletcher, N. Heintz, and R. G. Roeder, Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene, Cell. 51: 773 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. H. Singh, R. Sen, D. Baltimore, and P. A. Sharp, A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes, Nature. 319: 154 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. P. A. Bauerle, and D. Baltimore, Activation of DNA binding activity in an apparent cytoplasmic precursor of the NF-kB transcription factor, Cell. 53: 211 (1988).

    Article  Google Scholar 

  39. P. A. Bauerle, and D. Baltimore, IkB: a specific inhibitor of the NF-kB transcription factor, Science. 242: 540 (1988).

    Article  Google Scholar 

  40. M. Lenardo, J. W. Pierce, and D. Baltimore, Protein-binding sites in Ig gene enhancers determine trascriptional activity and inducibility, Science. 236: 1573 (1987).

    Article  PubMed  CAS  Google Scholar 

  41. M. L. Atchison, and R. P. Perry, The role of the k enhancer and its binding factor NF-kB in the developmental regulation of k gene transcription, Cell. 48: 121 (1987).

    Article  PubMed  CAS  Google Scholar 

  42. M. R. Wabl, and P. D. Burrows, Epression of immunoglobulin heavy chain at a high level in the absence of a proposed immunoglobulin enhancer in cis, Proc. Natl. Acad. Sci. USA. 81: 2452 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sinclair, A.J., Lonigro, R., Civitareale, D., Di Lauro, R. (1989). Thyroid Specific Gene Expression. In: Ekholm, R., Kohn, L.D., Wollman, S.H. (eds) Control of the Thyroid Gland. Advances in Experimental Medicine and Biology, vol 261. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2058-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2058-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2060-0

  • Online ISBN: 978-1-4757-2058-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics