Synaptic Relationships of Golgi-Impregnated Neurons as Identified by Electrophysiological or Immunocytochemical Techniques

  • Tamás F. Freund
  • P. Somogyi


Much of our present knowledge about the cellular organization of the different brain areas derives from Golgi studies, dating back to the end of the last century when Golgi (1883), Ramon y Cajal (1891, 1911), and many others introduced the modern era of neuroanatomy. The Golgi method allows the visualization of a small proportion of the neurons present in a brain area, together with most of their dendritic and axonal processes. As a result the impregnated cells can be traced and reconstructed in great detail. To gain an overall view of the different cell types and the distribution of neuronal processes in a brain area, even today Golgi impregnation is often the method of choice. It can provide much valuable information regarding local circuit patterns provided the material is critically analyzed (Szentágothai, 1975; Szentágothai and Arbib, 1974; for review see Millhouse, 1981). One limitation of the Golgi technique is that generally synaptic interactions can only be predicted by indirect correlation of separately impregnated dendritic and axonal patterns. In some cases, e.g., in the cerebellum, this enabled the classical histologists to assemble correctly the wiring of the entire neuronal system, whereas in other cases the correspondence between separately impregnated pre- and postsynaptic processes is not so obvious as to predict the organization of neuronal circuits.


Synaptic Contact Axon Initial Segment Dendritic Shaft Postsynaptic Target Potassium Dichromate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. C., 1977, Technical considerations on the use of horseradish peroxidase as a neuronal marker, Neuroscience 2:141–145.PubMedCrossRefGoogle Scholar
  2. Adams, J. C., 1981, Heavy metal intensification of DAB-based HRP reaction product, J. Histo-chem. Cytoehem. 29:775.CrossRefGoogle Scholar
  3. Blackstad, T. W., 1965, Mapping of experimental axon degeneration by electron microscopy of Golgi preparations, Z. Zeilforsch. 67:819–834.CrossRefGoogle Scholar
  4. Balckstad, T. W., 1969, Studies on the hippocampus: Methods of analysis, in: The Interneuron (M. Brazier, ed.), UCLA Forum in Medical Sciences, Los Angeles, pp. 391–414.Google Scholar
  5. Bolam, J. P., and Izzo, P. N., 1986, Cholinergic boutons in synaptic contact with striatonigral neurons in the rat neostriatum, Neurosci. Lett. Suppl. 26:S312.Google Scholar
  6. Bolam, J. P., Ingham, C. A., and Smith, A. D., 1984a, The section-Golgi-impregnation procedure. 3. Combination of Golgi-impregnation with enzyme histochemistry and electron microscopy to characterize acetylcholinesterase-containing neurons in the rat neostriatum, Neuroscience 12:687–709.PubMedCrossRefGoogle Scholar
  7. Bolam, J. P., Wainer, B. H., and Smith, A. D., 1984b, Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy, Neuroscience 12:711–718.PubMedCrossRefGoogle Scholar
  8. Bolam, J. P., Powell, J. F., Wu, J.-Y., and Smith, A. D., 1985, Glutamate decarboxylase-immu-noreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry, J. Comp. Neurol. 237:1–20.PubMedCrossRefGoogle Scholar
  9. Carson, K. A., and Mesulam, M.-M., 1982, Electron microscopic tracing of neural connections with horseradish peroxidase, in: Tracing Neural Connections with Horseradish Peroxidase, Methods in the Neurosciences (M.-M. Mesulam, ed.), John Wiley & Sons, Chichester, pp. 153–184.Google Scholar
  10. Cuello, A. C., Galfre, G., and Milstein, C., 1979, Detection of substance P in the central nervous system by a monoclonal antibody, Proc. Natl. Acad. Sci. U.S.A. 76:3532–3536.PubMedCrossRefGoogle Scholar
  11. Dalton, A. J., 1955, A chrome-osmium fixative for electron microscopy, Anat. Rec. 121:281.Google Scholar
  12. DeFelipe, J., Hendry, S. H. C., Jones, E. G., and Schmechel, D., 1985, Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory—motor cortex, J. Comp. Neurol. 231:364–384.PubMedCrossRefGoogle Scholar
  13. Dumas, M., Schwab, M. E., Baumann, R., and Thoenen, H., 1979, Retrograde transport of tetanus toxin through a chain of two neurons, Brain Res. 165:354–357.PubMedCrossRefGoogle Scholar
  14. Evinger, C., and Erichsen, J. T., 1986, Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization, Brain Res. 380:383–388.PubMedCrossRefGoogle Scholar
  15. Fairén, A., and Valverde, F., 1980, A specialised type of neuron in the visual cortex of cat: A Golgi and electron microscope study of chandelier cells, J. Comp. Neurol. 194:761–780.PubMedCrossRefGoogle Scholar
  16. Fairén, A., Peters, A., and Saldanha, J., 1977, A new procedure for examining Golgi impregnated neurons by light and electron microscopy, J. Neurocytol. 6:311–338.PubMedCrossRefGoogle Scholar
  17. Freund, T. F., and Somogyi, P., 1983, The section-Golgi impregnation procedure. 1. Description of the method and its combination with histochemistry after intracellular iontophoresis or retrograde transport of horseradish peroxidase, Neuroscience 9:463–470.PubMedCrossRefGoogle Scholar
  18. Freund, T. F., Martin, K. A. C., Smith, A. D., and Somogyi, P., 1983, Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat’s visual cortex, J. Comp. Neurol. 221:263–278.PubMedCrossRefGoogle Scholar
  19. Freund, T. F., Powell, J. F., and Smith, A. D., 1984, Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines, Neuroscience 13:1189–1215.PubMedCrossRefGoogle Scholar
  20. Freund, T. F., Martin, K. A. C., and Whitteridge, D., 1985a, Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements, J. Comp. Neurol. 242:263–274.PubMedCrossRefGoogle Scholar
  21. Freund, T. F., Martin, K. A. C., Somogyi, P., and Whitteridge, D., 1985b, Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic affrents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation, J. Comp. Neurol. 242:275–291.PubMedCrossRefGoogle Scholar
  22. Frotscher, M., and Leranth, C., 1986, The cholinergic innervation of the rat fascia dentata: Identification of target structures on granule cells by combining choline acetyltransferase immunocytochemistry and Golgi impregnation, J. Comp. Neurol. 243:58–70.PubMedCrossRefGoogle Scholar
  23. Frotscher, M., and Zimmer, J., 1983, Commissural fibers terminate on non-pyramidal neurons in the guinea pig hippocampus—a combined Golgi/EM degeneration study, Brain Res. 265:289–293.PubMedCrossRefGoogle Scholar
  24. Frotscher, M., Rinne, U., Hassler, R., and Wagner, A., 1981, Termination of cortical afferents on identified neurons in the caudate nucleus of the cat: A combined Golgi/EM degeneration study, Exp. Brain Res. 41:329–337.PubMedGoogle Scholar
  25. Gabbott, P. L. A., and Somogyi, J., 1984, The ‘single’ section Golgi-impregnation procedure: Methodological description, J. Neurosci. Methods 11:221–230.PubMedCrossRefGoogle Scholar
  26. Gerfen, C. R., O’Leary, D. D. M., and Cowan, W. M., 1982, A note on the transneuronal transport of wheat germ agglutinin-conjugated horseradish peroxidase in the avian and rodent visual systems, Exp. Brain Res. 48:443–448.PubMedCrossRefGoogle Scholar
  27. Golgi, C., 1883, Recherches sur l’histologie des centres nerveux, Arch. liai. Biol. 3:285–317.Google Scholar
  28. Grafstein, B., 1971, Transneuronal transfer of radioactivity in the central nervous system, Science 172:177–179.PubMedCrossRefGoogle Scholar
  29. Hamos, J. E., Van Horn, S. C., Raczkowski, D., and Sherman, S. M., 1987, Synaptic circuits involving an individual retinogeniculate axon in the cat, J. Comp. Neurol. 259:165–192.PubMedCrossRefGoogle Scholar
  30. Hanker, J. S., Yates, P. E., Metz, C. B., and Rustioni, A., 1977, A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase, Histochem J. 9:789–792.PubMedCrossRefGoogle Scholar
  31. Hodgson, A. J., Penke, B., Erdei, A., Chubb, I. W., and Somogyi, P., 1985, Antiserum to y-aminobutyric acid. I. Production and characterization using a new model system, J. Histochem. Cytochem. 33:229–239.PubMedCrossRefGoogle Scholar
  32. Itaya, S. D., and van Hoesen, G. W., 1982, WGA-HRP as a transneuronal marker in the visual pathways of monkey and rat, Brain Res. 236:199–204.PubMedCrossRefGoogle Scholar
  33. Izzo, P. N., and Bolam, J. P., 1986, The post-synaptic targets of substance P-immunoreactive boutons in the rat neostriatum, Neurosci. Lett. Suppl. 26:S312.Google Scholar
  34. Izzo, P. N., Graybiel, A. M., and Bolam, J. P., 1987, Characterization of substance P- and Met-enkephalin-immunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure, Neuroscience 20:577–587.PubMedCrossRefGoogle Scholar
  35. Kisvárday, Z. F., Cowey, A., and Somogyi, P., 1986, Synaptic relationships of a type of GABA-immunoreactive neuron (clutch cell), spiny stellate cells and lateral geniculate nucleus afferents in layer IVC of the monkey striate cortex, Neuroscience 19:741–761.PubMedCrossRefGoogle Scholar
  36. Kisvárday, Z. F., Martin, K. A. C., Friedlander, M. J., and Somogyi, P., 1987, Evidence for interlaminar inhibitory circuits in striate cortex of cat, J. Comp. Neurol. 260:1–19.PubMedCrossRefGoogle Scholar
  37. Koelle, G. B., and Friedenwald, J. S., 1949, A histochemical method for localizing Cholinesterase activity, Proc. Soc. Exp. Biol. Med. 70:617–622.PubMedGoogle Scholar
  38. Kristensson, K., Ninnesmo, I., Persson, L., and Lycke, E., 1982, Neuron to neuron transmission of herpes simplex virus. Transport of virus from skin to brainstem nuclei, J. Neurol. Sci. 54:149–156.PubMedCrossRefGoogle Scholar
  39. Lane, B. P., and Europa, D. L., 1965, Differential staining of ultrathin sections of Epon-embed-ded tissues for light microscopy, J. Histochem. Cytochem. 13:579–582.PubMedCrossRefGoogle Scholar
  40. Lewis, P. R., and Knight, D. P., 1977, Staining methods for sectioned material, in: Practical Methods in Electron Microscopy, Vol. 5 (A. M. Glauert, ed.), North-Holland, Amsterdam, pp. 1–311.Google Scholar
  41. Martin, K. A. C., and Whitteridge, D., 1984, Form, function, and intracortical projections of spiny neurones in the striate visual cortex of the cat, J. Physiol. (Lond.) 353:463–504.Google Scholar
  42. Mesulam, M.-M., and Mufson, E. J., 1980, The rapid anterograde transport of horseradish peroxidase, Neuroscience 5:1277–1286.PubMedCrossRefGoogle Scholar
  43. Micevych, P., and Elde, R., 1980, Relationship between enkephalinergic neurons and the vasopressin—Oxytocin neuroendocrine system of the cat: An immunohistochemical study, J. Comp. Neurol 190:135–146.PubMedCrossRefGoogle Scholar
  44. Mulhouse, O. E., 1981, The Golgi methods, in: Neuroanatomical Tract-Tracing Methods (L. Hei-mer and M.J. RoBards, eds.), Plenum Press, New York. pp. 311–344.CrossRefGoogle Scholar
  45. Peters, A., 1984, Chandelier cells, in: Cerebral Cortex. Cellular Components of the Cerebral Cortex, Vol. 1 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 361–380.Google Scholar
  46. Peters, A., Proskauer, C. C., Feldman, M. L., and Kimerer, L., 1979, The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. V. Degenerating axon terminals synapsing with Golgi impregnated neurons, J. Neurocytol. 8:331–357.PubMedCrossRefGoogle Scholar
  47. Peters, A., Proskauer, C. C., and Ribak, C. E., 1982, Chandelier cells in rat visual cortex, J. Comp. Neurol. 206:397–416.PubMedCrossRefGoogle Scholar
  48. Ramon y Cajal, S., 1891, Sur la structure de l’ecorce cerebrale de quelques mammifères, Cellule 7:3–54.Google Scholar
  49. Ramon y Cajal, S., 1911, Histologie du Systeme Nerveux de l’Homme et des Vertèbres, Maloine, Paris.Google Scholar
  50. Reperant, J., 1975, The orthograde transport of horseradish peroxidase in the visual system, Brain Res. 85:307–312.PubMedCrossRefGoogle Scholar
  51. Reynolds, E. S., 1963, The use of lead citrate at high pH as an electron opaque stain in electron microscopy, J. Cell. Biol. 17:208–212.PubMedCrossRefGoogle Scholar
  52. Ribak, C. E., 1978, Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase, J. Neurocytol. 7:461–478.PubMedCrossRefGoogle Scholar
  53. Ruda, M., and Coulter, J. D., 1982, Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry, Brain Res. 249:237–246.PubMedCrossRefGoogle Scholar
  54. Rye, D. B., Saper, C. B., and Wainer, B. H., 1984, Stabilization of the tetramethylbenzidine (TMB) reaction product: Application for retrograde and anterograde tracing, and combination with immunohistochemistry, J. Histochem. Cytochem. 32:1145–1153.PubMedCrossRefGoogle Scholar
  55. Somogyi, P., 1977, A specific axo-axonal interneuron in the visual cortex of the rat, Brain Res. 136:345–350.PubMedCrossRefGoogle Scholar
  56. Somogyi, P., 1978, The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain, Neuroscience 3:167–180.PubMedCrossRefGoogle Scholar
  57. Somogyi, P., 1986, Seven distinct types of GABA-immunoreactive neuron in the visual cortex of cat, Soc. Neurosci. Abstr. 12:583.Google Scholar
  58. Somogyi, P., and Hodgson, A. J., 1985, Antiserum to y-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex, J. Histochem. Cytochem. 33:249–257.PubMedCrossRefGoogle Scholar
  59. Somogyi, P., and Smith, A. D., 1979, Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase transport procedure at both light and electronmicroscopic levels, Brain Res. 178:3–15.PubMedCrossRefGoogle Scholar
  60. Somogyi, P., and Takagi, H., 1982, A note on the use of picric acid—paraformaldehyde—glutar-aldehyde fixative for correlated light and electron microscopic immunocytochemistry, Neuroscience 7:1779–1783.PubMedCrossRefGoogle Scholar
  61. Somogyi, P., Hodgson, A. J., and Smith, A. D., 1979, An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi-staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material, Neuroscience 4.T805–1852.CrossRefGoogle Scholar
  62. Somogyi, P., Bolam, J. P., and Smith, A. D., 1981a, Monosynaptic cortical input and local axon collaterals of identified striatnigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure, J. Comp. Neurol. 195:567–584.PubMedCrossRefGoogle Scholar
  63. Somogyi, P., Freund, T. F., Halász, N., and Kisvárday, Z. F., 1981b, Selectivity of neuronal 3H-GABA accumulation in the visual cortex as revealed by Golgi staining of the labelled neurons, Brain Res. 225:431–436.PubMedCrossRefGoogle Scholar
  64. Somogyi, P., Freund, T. F., and Cowey, A., 1982, The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey, Neuroscience 7:2577–2607.PubMedCrossRefGoogle Scholar
  65. Somogyi, P., Freund, T. F., Wu, J.-Y., and Smith, A. D., 1983, The section Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decarboxylase in Golgiimpregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat, Neuroscience 9:475–490.PubMedCrossRefGoogle Scholar
  66. Somogyi, P., Freund, T. F., Hodgson, A. J., Somogyi, J., Beroukas, D., and Chubb, I. W., 1985, Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat, Brain Res. 332:143–149.PubMedCrossRefGoogle Scholar
  67. Sotelo, C., and Riche, D., 1974, The smooth endoplasmic reticulum and the retrograde and fast orthograde transport of horseradish peroxidase in the nigro-striato-nigral loop, Anat. Embryol. 146:209–218.PubMedCrossRefGoogle Scholar
  68. Stell, W. K., 1965, Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations, Anat. Rec. 153:389–397.PubMedCrossRefGoogle Scholar
  69. Stell, W. K., 1967, The structure and relationships of horizontal cells and photoreceptor—bipolar synaptic complexes in goldfish retina, Am. J. Anat. 121:401–424.PubMedCrossRefGoogle Scholar
  70. Szentágothai, J., 1975, What the “Reazione Nera” has given to us, in: Golgi Centennial Symposium Proceedings (M. Santini, ed.), Raven Press, New York, pp. 1–12.Google Scholar
  71. Szentágothai, J., 1978, The neuron network of the cerebral cortex: A functional interpretation. The Ferrier Lecture, 1977, Proc. R. Soc. Lond. [Biol.] 201:219–248.CrossRefGoogle Scholar
  72. Szentágothai, J., and Arbib, M. A., 1974, Conceptual models of neural organization, Neurosci. Res. Prog. Bull. 12:305–510.Google Scholar
  73. van den Pol, A. N., Herbst, R., and Powell, J. F., 1984, Tyrosine hydroxylase-immunoreactive neurons of the hypothalamus: A light and electron microscopic study, Neuroscience 13:1117–1156.PubMedCrossRefGoogle Scholar
  74. White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–313.CrossRefGoogle Scholar
  75. White, E. L., and Rock, M. P., 1981, A comparison of thalamocortical and other synaptic inputs to dendrites of two non-spiny neurons in a single barrel of mouse SmI cortex, J. Comp. Neurol. 195:265–278.PubMedCrossRefGoogle Scholar
  76. Wu, J.-Y., Lin, C.-T., Brandon, T. S., Mohler, H., and Richards, J. G., 1982, Regulation and immunocytochemical characterization of glutamic acid decarboylase, in: Cytochemical Methods in Neuroanatomy (V. Chan-Palay and S. L. Palay, eds.) Alan R. Liss, New York, pp. 279–296.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Tamás F. Freund
    • 1
  • P. Somogyi
    • 1
  1. 1.MRC Anatomical Neuropharmacology UnitUniversity Department of PharmacologyOxfordUK

Personalised recommendations