Intracellular Labeling and Immunocytochemistry

  • Stephen T. Kitai
  • G. Richard Penny
  • Howard T. Chang


Since its introduction in 1976 (Cullheim and Kellerth, 1976; Jankowska et al., 1976; Kitai et al., 1976; Light and Durkovic, 1976; Snow et al., 1976), the method of intracellular injection of horseradish peroxidase (HRP) has established itself as an enormously productive tool for neurobiology (Kitai and Bishop, 1981; Kitai and Wilson, 1982). The fundamental advantage of the technique is that it allows direct correspondence between cellular physiology and morphology to be established. First, as a physiological tool, the HRP-filled microelectrode is suitable for the analysis of any neurophysiological property of a neuron that can be assayed by intracellular recording. Second, as a morphological tool, intracellular iontophoresis of HRP fills and labels the entire extent of a neuron, including soma, dendrites, dendritic specializations such as spines, and as much of the axon, axonal collaterals, and terminals as survival time permits. The morphological rendition of the HRP-filled neuron revealed by enzyme histochemistry is equal to or better than the results of the very best Golgi stains.


Tyrosine Hydroxylase Primary Antiserum Intracellular Injection Tissue Chopper Intracellular Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. C. 1977, Technical considerations on the use of horseradish peroxidase as a neuronal marker, Neuroscience 2:141–145.PubMedCrossRefGoogle Scholar
  2. Afsharpour, S., Kita, H., Penny, G. R., and Kitai, S. T., 1985, Glutamate acid decarboxylase, substance P and Leu-enkephalin-immunoreactive neurons in the neostriatum that project to the globus pallidus and substantia nigra, Soc. Neurosci. Abstr. 11:362.Google Scholar
  3. Bargas, J., Galarraga, E., Chang, H. T., and Kitai, S. T., 1988, Electrophysiological and double-labeling immunohistochemical analyses of neurons in the substantia nigra zona compacta of the rat, Soc. Neurosci. Abstr. 14:1025.Google Scholar
  4. Berod, A., Hartman, B. K., and Pujol, J. F., 1981, Importance of fixaton in immunocytochem-istry: Use of formaldehyde solutions at variable pH for the localization of tysosine hydroxylase, J. Histochem. Cytochem. 29:844–850.PubMedCrossRefGoogle Scholar
  5. Brown, K. T., and Flaming, D. G., 1986, Advanced Micropipette Techniques for Cell Physiology, John Wiley & Sons, New York.Google Scholar
  6. Brown, P. G., Maxfield, B. W., and Moraff, H., 1973, Electronics for Neurobiologists, MIT Press, Cambridge, MA.Google Scholar
  7. Chang, H. T., 1988, Dopamine-acetylcholine interaction in the striatum: A dual-labeling im-munocytochemical study of tyrosine hydroxylase and choline acetyltransferase positive elements in the rat, Brain Res. Bull. 21:295–304.PubMedCrossRefGoogle Scholar
  8. Chang, H. T., Waters, R. S., and Kitai, S. T., 1986, Intracellular labeling combined with im-munocytochemistry in the rat substantia nigra, Soc. Neurosci. Abstr. 12:654.Google Scholar
  9. Colman, D. R., Scalia, F., and Cabrales, E., 1976, Light and electron microscopic observations on the anterograde transport of horseradish peroxidase in the optic pathway in the mouse and rat, Brain Res. 102:156–163.PubMedCrossRefGoogle Scholar
  10. Culheim, S., and Kellerth, J. O., 1976, Combined light and electron microscopic tracing of neurons including axons and synaptic terminals after the intracellular injection of horseradish peroxidase, Neurosci. Lett. 2:307–313.CrossRefGoogle Scholar
  11. Czerkensky, C. C., Nilsson, L. A., Nygran, H., Ouchterlony, O., and Tarkowski, A., 1983, A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secretion cells, J. Immunol. Methods 65:109–121.CrossRefGoogle Scholar
  12. Dingledine, R. (ed.), 1984, Brain Slices, Plenum Press, New York.CrossRefGoogle Scholar
  13. Donoghue, J. P., and Herkenham, M., 1983, Multiple patterns of corticostriatal projections and their relationship to opiate receptor patches in rats, Soc. Neurosci. Abstr. 9:15.Google Scholar
  14. Gerfen, C. R., 1984, The neostriatal mosaic: Compartmentalization of corticostriatal input and striatonigral output systems, Nature 314:461–464.CrossRefGoogle Scholar
  15. Gerfen, C. R., 1985, The neostriatal mosaic: I. Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol. 236:454–476.PubMedCrossRefGoogle Scholar
  16. Goldman, P. S., and Nauta, W.J. H., 1977, An intracately patterned prefronto-caudate projection in the rhesus monkey, J. Comp. Neurol. 171:369–386.CrossRefGoogle Scholar
  17. Goldman-Rakic, P. S., 1982, Cytoarchitechtectonic heterogenity of the primate neostriatum: Subdivisions into island and matrix cellular compartments, J. Comp. Neurol. 205:398–413.PubMedCrossRefGoogle Scholar
  18. Graybiel, A. M., 1983, Compartmental organization of the mammalian striatum, in: Progress in Brain Research, Volume 58: Molecular and Cellular Interactions Underlying Higher Brain Functions (J. P. Changeux, J. Glowinski, M. Imbert, and F. E. Bloom, eds.), Elsevier, New York, pp. 247–256.Google Scholar
  19. Graybiel, A. M., and Ragsdale, C. W., 1978a, Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining, Proc. Natl. Acad. Sci. U.S.A. 75:5723–5726.PubMedCrossRefGoogle Scholar
  20. Graybiel, A. M., and Ragsdale, C. W., 1978b, Striosomal organization of the caudate nucleus. I. Acetylcholinesterase histochemistry of the striatum in the cat, rhesus monkey, and human being, Soc. Neurosci. Abstr. 4:44.Google Scholar
  21. Graybiel, A. M., Ragsdale, C. W., and Edley, S. M., 1979, Compartments in the striatum of the cat observed by retrograde cell labeling, Exp. Brain Res. 34:189–195.PubMedCrossRefGoogle Scholar
  22. Graybiel, A. M., Ragsdale, C. W., Yoneka, E. S., and Elde, R. P., 1981, An immunohistochem-ical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns to register with the striosomal compartments visible by acetylcholinesterase staining, Neuroscience 6:377–382.PubMedCrossRefGoogle Scholar
  23. Herkenham, M., and Pert, C. B., 1981, Mosaic distribution of opiate receptors, parafascicular projections, and acetylcholinesterase in rat striatum, Nature 291:415–418.PubMedCrossRefGoogle Scholar
  24. Herkenham, M., Edley, S. M., and Stuart, J., 1984, Cell clusters in the nucleus accumbens of the rat and the mosaic relationship of the opiate receptors, acetylcholinesterase and subcortical afferent termination, Neuroscience 11:561–591.PubMedCrossRefGoogle Scholar
  25. Holgate, C. S., Jackson, P., Cowen, P. N., and Bird, C. C., 1983, Immunogold-silver staining: New method of immunostaining with enhanced sensitivity, J. Histochem. Cytochem. 31:938–944.PubMedCrossRefGoogle Scholar
  26. Horikawa, K., and Armstrong, W. E., 1988, A versatile means of intracellular labeling: Injection of biocytin and its detection with avidin conjugates, J. Neurosci. Methods 25:1–11.PubMedCrossRefGoogle Scholar
  27. Hsu, S. M., Raine, L., and Ganger, H., 1981, The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem. 29:577–580.PubMedCrossRefGoogle Scholar
  28. Itoh, K., Konishi, A. Nomura, S., Mizuno, N., Nakamura, Y., and Sugimoto, I., 1979, Application of coupled oxidation reaction to electron microscope demonstration of horseradish peroxidase: Cobalt-glucose oxidase method, Brain Res. 175:341–346.PubMedCrossRefGoogle Scholar
  29. Jankowska, E., Rastad, R., and Westman, J., 1976, Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spino-cervical tract cells, Brain Res. 105:555–562.CrossRefGoogle Scholar
  30. Kalil, K., 1978, Patch-like termination of thalamic fibers in the putamen of the rhesus monkey: An autoradiographic study, Brain Res. 140:333–339.PubMedCrossRefGoogle Scholar
  31. Kitai, S. T., and Bishop, G. A., 1981, Intracellular staining of neurons, in Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. RoBards, eds.), Plenum Press, New York, pp. 263–277.CrossRefGoogle Scholar
  32. Kitai, S. T., and Kita, H., 1984, Electrophysiological study of the neostriatum in brain slice preparation, in: Brain Slices (R. Dingledine, ed.), Plenum Press, New York, pp. 285–296.CrossRefGoogle Scholar
  33. Kitai, S. T., and Wilson, C. J., 1982, Intracellular labeling of neurons in mammalian brains, in: Cytochemical Methods in Neuroanatomy (V. Chan-Palay and S. Palay, eds.), Alan R. Liss, New York, pp. 533–549.Google Scholar
  34. Kitai, S. T., Kosis, J. D., Preston, R. J., and Sugimori, M., 1976, Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase, Brain Res. 109:601–606.PubMedCrossRefGoogle Scholar
  35. Light, A. R., and Durkovic, R. G., 1976, Horseradish peroxidase: An improvement in intracellular straining of single electrophysiologically characterized neurons, Exp. Neurol. 53:847–853.PubMedCrossRefGoogle Scholar
  36. Lighthall, J. W., Park, M. R., and Kitai, S. T., 1981, Inhibition in slices of rat neostriatum, Brain Res. 212:182–187.PubMedCrossRefGoogle Scholar
  37. McLean, I. W., and Nakane, P. K., 1974, Periodate-lysine-paraformaldehyde fixative: A new fixative for immunoelectron microscopy, J. Histochem. Cytochem. 22:1077–1083.PubMedCrossRefGoogle Scholar
  38. Misgeld, U., and Bak, I. J., 1979, Intrinsic excitation in the rat neostriatum mediated by acetylcholine, Neurosci. Lett. 12:277–282.PubMedCrossRefGoogle Scholar
  39. Morrison, R., 1986, Grounding and Shielding Techniques in Instrumentation, John Wiley & Sons, New York.Google Scholar
  40. Nobin, A., and Bjorklund, A., 1973, Topography of the monoamine neuron system in the human brain as revealed in fetuses, Acta Physiol. Scand. 88:1–40.CrossRefGoogle Scholar
  41. Olson, L., Boreus, L., and Seiger, A., 1972a, Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholamine-containing neuron systems in the human fetal brain, Z. Anat. Entwickl. Gesch. 139:259–282.CrossRefGoogle Scholar
  42. Olson, L., Seiger, A., and Fuxe, K., 1972b, Heterogenity of striatal and limbic dopamine innervation: Highly fluorescent islands in developing and adult rats, Brain Res. 44:283–288.PubMedCrossRefGoogle Scholar
  43. Park, M. R., 1985, A complete digitally neurophysiological recording laboratory, in: The Microcomputer in Cell and Neurobiology Research (R. R. Mize, ed.), Elsevier, New York, pp. 411–434.Google Scholar
  44. Penny, G. R., Wilson, C. J., and Kitai, S. T., 1984, The influence of neostriatal patch and matrix compartments on the dendritic geometry of spiny projection neurons in the rat as revealed by intracellular labeling with HRP combined with immunocytochemistry, Soc. Neurosci. Abstr. 10:514.Google Scholar
  45. Penny, G. R., Chang, H. T., and Kitai, S. T., 1986, Dual localization of [Leu]enkephalin and choline acetyltransferase in the rat basal ganglia, Soc. Neurosci. Abstr. 12:1328.Google Scholar
  46. Penny, G. R., Wilson, C. J., and Kitai, S. T., 1988, Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organization of the neostriatum, J. Comp. Neurol. 269:275–289.PubMedCrossRefGoogle Scholar
  47. Purves, R. D., 1981, Microelectrode Methods for Intracellular Recording and Ionophoresis, Academic Press, London.Google Scholar
  48. Ragsdale, C. W., and Graybiel, A. M., 1984, Further observations on the striosomal organization of frontostriatal projections in cats and monkeys, Soc. Neurosci. Abstr. 10:514.Google Scholar
  49. Sandell, J. H., and Masland, R. H., 1988, Photoconversion of some fluorescent markers to a diaminobenzidine product, J. Histochem. Cytochem. 36:555–559.PubMedCrossRefGoogle Scholar
  50. Scholer, J., and Armstrong, W. K., 1982, Aqueous aldehyde (FAGLU) histofluorescence for catecholamines in 2 μm sections using polyethylene glycol embedding, Brain Res. Bull. 9:27–31.PubMedCrossRefGoogle Scholar
  51. Snow, P. J., Rose, P. K., and Brown, A. G., 1976, Tracing axons and axon collaterals of spinal neurons using intracellular injections of horseradish peroxidase, Science 191:312–313.PubMedCrossRefGoogle Scholar
  52. Somogyi, P., and Soltesz, I., 1986, Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat’s visual cortex, Neuroscience 19:1051–1065.PubMedCrossRefGoogle Scholar
  53. Sternberger, C. A., 1986, Immunocytochemistry, 3rd ed., John Wiley & Sons, New York.Google Scholar
  54. Tennyson, V. M., Barrett, R. E., Cohen, G., Cote, L., Heikkila, R., and Mytineou, C., 1972, The developing neostriatum of the rabbit: Correlation of fluoresence histochemistry electron microscopy, endogenous dopamine levels, and [3H]dopamine uptake, Brain Res. 46:2541–285.CrossRefGoogle Scholar
  55. van den Pol, A. N., 1984, Colloidal gold and biotin-avidin conjugates as ultrastructural markers for neural antigens, Q. J. Exp. Physiol. 69:1–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stephen T. Kitai
    • 1
  • G. Richard Penny
    • 1
  • Howard T. Chang
  1. 1.Department of Anatomy and Neurobiology, College of MedicineUniversity of TennesseeTennesseeUSA

Personalised recommendations