Interchangeable Uses of Autoradiographic and Peroxidase Markers for Electron Microscopic Detection of Neuronal Pathways and Transmitter-Related Antigens in Single Sections

  • Virginia M. Pickel
  • Teresa A. Milner

Abstract

In the past several years, there has been a rapid expansion in use of immu-nocytochemical methods for identifying neuronal molecules. These include neurotransmitter-synthesizing enzymes, several transmitters such as norepinephrine (NE), dopamine (DA), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA), and a variety of neuropeptides (Cuello, 1983; Heym and Lang, 1986; Pickel, 1985; Polak and Van Noorden, 1983; Steinbush et al., 1978; Storm-Mathisen et al., 1983). The increasing use of immunocyto-chemistry is largely attributable to both commercial and individual production of a large number of mono- and polyclonal antibodies (MacMillan and Cuello, 1986; M. E. Ross et al., 1981; Sofroniew et al., 1978). Many of the available antibodies have a high titer and can be specifically localized by several different immunocytochemical methods. The most common methods employ secondary immunoglobulins (IgGs) produced against serum from the same species as the primary antibody. The secondary IgG is conjugated with either fluorescence, peroxidase, gold, or radiolabeled markers (i.e., tritium or iodine) for localization of the antibodies in sections of tissue (DeMey, 1983; Glazer et al., 1984; Hunt and Mantyh, 1984; Pickel et al., 1986). Alternatively, the secondary IgG can be immunologically bound to a peroxidase-antiperoxidase (PAP) complex with the antiperoxidase being produced in the same apecies as the primary antibody (Sternberger, 1979).

Keywords

Wheat Germ Agglutinin Retrograde Transport Solitary Tract Anterograde Transport Electron Microscopic Autoradiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Akher, M., Hamilton, J. K., Montgomery, R., and Smith, F., 1952, A new procedure for the demonstration of the fine structure of polysaccharide, J. Am. Chem. Soc. 74:4970–4971.CrossRefGoogle Scholar
  2. Amaral, D. G., and Price, J. L., 1983, An air pressure system for the injection of tracer substances into the brain, J. Neurosci. Methods 9:35–44.PubMedCrossRefGoogle Scholar
  3. Beaudet, A., 1982, High resolution radioautography of central 5-hydroxytryptamine (5-HT) neurons, J. Histochem. Cytochem. 9:765–768.CrossRefGoogle Scholar
  4. Bosler, O., Beaudet, A., and Pickel, V. M., 1986, Characterization of chemically defined neurons and their cellular relationships by combined immunocytochemistry and radioauto-graphic localization of transmitter uptake sites, J. Electron Microsc. Tech. 4:21–39.CrossRefGoogle Scholar
  5. Brushart, T. M., and Mesulam, M. M., 1980, Transganglionic demonstration of central sensory projections from skin and muscle with HRP—lectin conjugates, Neurosci. Lett. 17:1–6.PubMedCrossRefGoogle Scholar
  6. Carson, K. A., and Mesulam, M. M., 1982, Electron microscopic tracing of neuronal connections with horseradish peroxidase, in: IBRO Handbook Series: Methods in the Neurosciences, Tracing Neural Connections with Horseradish Peroxidase (M.-M. Mesulam, ed.), John Wiley & Sons, New York, pp. 153–185.Google Scholar
  7. Chalmers, J. P., White, S. W., Gefen, L. B., and Rush, R., 1978, the role of central catecholamines in the control of blood pressure through the baroreceptor reflex and the nasopharyngeal reflex in the rabbit, in: Hypertension and Brain Mechanisms, Progress in Brain Research, Volume 47 (W. DeJong, A. P. Provoost, and A. P. Shapiro, eds.) Elsevier/North Holland, Amsterdam, pp. 85–94.Google Scholar
  8. Chan, J., Velley, L., Milner, T. A., Morrison, S., and Pickel, V. M., 1988, Identity of vagal afferents and efferents in relation to neurons containing enkephalin-like immunoreactivity, Soc. Neurosci. Abstr. 14:1317.Google Scholar
  9. Courville, J., and Saint-Cyr, J. A., 1978, Modification of the horseradish peroxidase method avoiding fixation, Brain Res. 142:551–558.PubMedCrossRefGoogle Scholar
  10. Cowan, W. M., and Cuenod, M. (eds.), 1975, The Use of Axonal Transport for Studies of Neuronal Connectivity, Elsevier, Amsterdam, New York.Google Scholar
  11. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A., 1972, The autoradiographic demonstration of axonal connections in the central nervous system, Brain Res. 37:21–51.PubMedCrossRefGoogle Scholar
  12. Cuello, A. C. (ed.), 1983, Immunohistochemistry, IBRO Handbook Series: Methods in Neurosciences; , Volume 3, John Wiley &ampSons, Chichester.Google Scholar
  13. Cuello, A. C., and Kanazawa, I., 1978, The distribution of substance P immunoreactive fibers in the rat central nervous system, J. Comp. Neurol. 178:129–156.PubMedCrossRefGoogle Scholar
  14. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system, Acta. Physiol. Scand. 62:1–55.Google Scholar
  15. Dejong, W., 1974, Noradrenaline: Central inhibitory control of blood pressure and heart rate, Eur. J. Pharmacol. 29:178–181.Google Scholar
  16. DeMey, J., 1983, A critical review of light and electron microscopic immunocytochemical techniques used in neurobiology, J. Neurosci. Methods 7:1–18.CrossRefGoogle Scholar
  17. DeOlmos, J., and Heimer, L., 1977, Mapping of collateral projections with the HRP-method Neurosci. Lett., 6:107–114.CrossRefGoogle Scholar
  18. Descarries, L., and Beaudet, A., 1983, Use of radioautography for investigation of transmitter-specific neurons, in: Handbook of Chemical Neuroanatomy, Volume 3 (A. Bjorklund and T. Hökfelt, eds.), Elsevier, Amsterdam, pp. 286–364.Google Scholar
  19. Eckenstein, F., and Thoenen, H., 1982, Production of specific antisera and monoclonal antibodies to choline acetyl transferase: Characterization and use for identification of cholinergic neurons, EMBO J. 1:363–368.PubMedGoogle Scholar
  20. Elde, R., Hökfelt, T., Johansson, O., and Terenius, L., 1976, Immunohistochemical studies using antibodies to leucine-enkephalin: Initial observations of the nervous system of the rat, Neuroscience 1:349–351.PubMedCrossRefGoogle Scholar
  21. Falls, W. M., 1988, Synaptic organization of primary axons in trigeminal nucleus oralis, J. Electron Micros. Tech. 10:213–228.CrossRefGoogle Scholar
  22. Fertuck, H. C., and Salpeter, M. M., 1974, Sensitivity in electron microscopic autoradiography for 125I, J. Histochem. Cytochem. 22:80–87.PubMedCrossRefGoogle Scholar
  23. Glazer, E. J., Ramachandran, J., and Basbaum, A. I., 1984, Radioimmunocytochemistry using a tritiated goat anti-rabbit second antibody, J. Histochem. Cytochem. 32:778–782.PubMedCrossRefGoogle Scholar
  24. Gonatas, N. K., Harper, C., Mizutani, T., and Gonatas, J. O., 1979, Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde azonal transport, J. Histochem. Cytochem. 27:728–734.PubMedCrossRefGoogle Scholar
  25. Graham, R. C., Jr., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem. 14:291–302.PubMedCrossRefGoogle Scholar
  26. Groenewegen, H. J., and Russchen, F. T., 1984, Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: A tracing and immunohistochemical study in the cat, J. Comp. Neurol. 223:347–367.PubMedCrossRefGoogle Scholar
  27. Heym, C., and Lang, R., Transmitters in sympathetic postganglionic neurons, in: Neurohisto-chemistry: Modern Methods and Applications., Alan R. Liss, Inc., New York, pp. 493–525.Google Scholar
  28. Higgins, G. A., Hoffman, G. E., Wray, S., and Schwaber, J. S., 1984, Distribution of neuroten-sin-immunoreactivity within baroreceptive portions of the nucleus of the tractus solitarius and the dorsal vagal nucleus of the rat, J. Comp. Neurol. 226:155–164.PubMedCrossRefGoogle Scholar
  29. Howe, P. R. C., Costa, M., Furness, J. B., and Chalmers, J. P., 1980, Simultaneous demonstration of phenylethanolamine N-methyl-transferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata, Neuroscience 5:2229–2238.PubMedCrossRefGoogle Scholar
  30. Hunt, S. P., and Mantyh, P. W., 1984, Radioimmunohistochemistry with 3H-biotin, Brain Res. 291:203–217.PubMedCrossRefGoogle Scholar
  31. Isaacson, L. G., and Tanaka, D., 1988, Cholinergic innervation of canine thalamostriatal projection neurons: an ultrastructural study combining choline acetyltransferase immunocyto-chemistry and WGA-HRP retrograde labeling, J. Comp. Neurol. 227:529–540.CrossRefGoogle Scholar
  32. Joh, T. H., Gegham, C., and Reis, D. J., 1973, Immunochemical demonstration of increased tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reser-pine, Proc. Natl. Acad. Sci. U.S.A. 70:2767–2771.PubMedCrossRefGoogle Scholar
  33. Kalia, M., and Mesulam, M.-M., 1980, Brain stem and spinal cord projections of vagal sensory and motor fibers in the cat: I. The cervical vagus and nodose ganglion, J. Comp. Neu-rol. 193:435–466.CrossRefGoogle Scholar
  34. Karlsson, J.O., and Sjöstrand, J., 1969, The effect of colchicine on the axonal transport of protein in the optic nerve and tract of rabbit, Brain Res. 13:617–619.PubMedCrossRefGoogle Scholar
  35. Katz, D. M., and Karten, H. J., 1979, The discrete anatomical localization of vagal aortic afferents within a catecholamine-containing cell group in the nucleus solitarius, Brain Res. 171:187–195.PubMedCrossRefGoogle Scholar
  36. Khachaturian, H., and Watson, S. J., 1982, Some perspectives on monoamine-opioid peptide interactions in rat central nervous system, Brain Res. Bull. 9:441–462.PubMedCrossRefGoogle Scholar
  37. Kim, C. C., and Strick, P. L., 1976, Critical factors involved in the demonstration of horseradish peroxidase retrograde transport, Brain Res. 103:356–361.PubMedCrossRefGoogle Scholar
  38. King, J. C., Lechan, R. M., Kugel, G., and Anthony, E. L. P., 1983, Acrolein: a fixative for immunocytochemical localization of peptides in the central nervous system, J. Histochem. Cytochem. 31:62–68.PubMedCrossRefGoogle Scholar
  39. Larsson, L.-L., 1981, A novel immunocytochemical model system for specificity and sensitivity screening of antisera against multiple antigens, J. Histochem. Cytochem. 29:408–410.PubMedCrossRefGoogle Scholar
  40. LaVail, J. H., and LaVail, M. M., 1974, The retrograde intra-axonal transport of horseradish peroxidase in chick visual system: A light and electron microscopic study, J. Comp. Neurol. 157:303–358.PubMedCrossRefGoogle Scholar
  41. Leranth, C., and Pickel, V. M., 1989, Electron microscopic pre-embedding double immuno-staining methods, in: Neuroanatomical Tract-Tracing Methods 2: Recent Progress (L. Heimer and L. Zaborszky, eds.), Plenum, New York, Chapter 6.Google Scholar
  42. Ljungdahl, A., Hökfelt, T., and Nilsson, G., 1978, Distribution of substance P-like immuno-reactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals, Neuroscience 3:861–943.PubMedCrossRefGoogle Scholar
  43. Loewy, A. D., and Burton, H., 1978, Nuclei of the solitary tract: Efferent projections to the lower brainstem and spinal cord of the cat, J. Comp. Neurol. 181:421–450.PubMedCrossRefGoogle Scholar
  44. MacMillan, F. M., and Cuello, A. C., 1986, Monoclonal antibodies in neurohistochemistry: The state of the art, in: Neurohistochemistry: Modern Methods and Applications (P. Panula, H. Pai-varinta, and S. Soinila, eds.), Alan R. Liss, New York, pp. 49–74.Google Scholar
  45. Maley, B., and Elde, R., 1982, Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii, Neuroscience 7:2469–2490.PubMedCrossRefGoogle Scholar
  46. Masurovsky, E. R., and Bunge, R. P., 1968, Fluoroplastic coverslips for long-term nerve tissue culture, Stain Technol. 43:161–165.PubMedGoogle Scholar
  47. McLean S., Skirboll, L. R., and Pert, C. B., 1983, Opiatergic projection from the bed nucleus to the habenula: Demonstration by a novel radioimmunohistochemical method, Brain Res. 278:255–257.PubMedCrossRefGoogle Scholar
  48. Mesulam, M.-M., 1976, The blue reaction product in horseradish peroxidase histochemistry: Incubation parameters and visibility, J. Histochem. Cytochem. 24:1273–1280.PubMedCrossRefGoogle Scholar
  49. Mesulam, M.-M., 1978, Tetramethyl benzidine for horseradish peroxidase histochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents, J. Histochem. Cytochem. 26:106–117.PubMedCrossRefGoogle Scholar
  50. Mesulam, M.-M., 1982, Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neuronal pathways—Axonal transport, enzyme histochemistry, and light microscopic analysis, in: Tracing Neuronal Connections with Horseradish Peroxidase (M. M. Mesulam, ed.), John Wiley & Sons, New York, pp. 1–152.Google Scholar
  51. Mesulam, M.-M., and Mufson, E. J., 1980, The rapid anterograde transport of horseradish peroxidase, Neuroscience. 5:1277–1286.PubMedCrossRefGoogle Scholar
  52. Mesulam, M.-M., and Rosen, D. L., 1979, Sensitivity in horseradish peroxidase neurohistochemistry: A comparative and quantitative analysis of nine methods, J. Histochem. Cytochem. 27:763–773.PubMedCrossRefGoogle Scholar
  53. Mesulam, M.-M., Hegarty, E., Barbas, H., Carson, K. A., Gower, E. C., Knapp, A. G., Moss, M. B., and Mufson, E. J., 1980, Additional factors influencing sensitivity in the tetramethyl benzidine method for horseradish peroxidase neurohistochemistry, J. Histochem. Cytochem. 28:1255–1259.PubMedCrossRefGoogle Scholar
  54. Milner, T. A., and Pickel, V. M., 1986a, Neurotensin in the rat parabrachial region: Ultrastructural localization and extrinsic sources of immunoreactivity, J. Comp. Neurol. 247:326–343.PubMedCrossRefGoogle Scholar
  55. Milner, T. A., and Pickel, V. M., 1986b, Ultrastructural localization and afferent sources of substance P in the rat parabrachial region, Neuroscience 17:687–707.PubMedCrossRefGoogle Scholar
  56. Milner, T. A., Joh, T. H., Miller, R. J., and Pickel, V. M., 1984, Substance P, neurotensin, enkephalin and catecholamine-synthesizing enzymes: Light microscopic localization compared with autoradiographic label in solitary efferents to the rat parabrachial region, J. Comp. Neurol. 226:434–447.PubMedCrossRefGoogle Scholar
  57. Milner, T. A., Morrison, S., Abate, C., and Reis, D. J., Phenylethanolamine N-methyltransfer-asecontaining terminals synapse directly on sympathetic preganglionic neurons in the rat, Brain Res. 448:205–222.Google Scholar
  58. Mogensen, G. J., Jones, D. L., and Yim, C. Y., 1980, From motivation to action: Functional interface between the limbic system and the motor system, Prog. Neurobiol. 14:69–97.CrossRefGoogle Scholar
  59. Molin, S. O., Nygren, H., and Dolonius, L., 1978, A new method for the study of glutaralde-hyde-induced cross-linking properties in proteins with special reference to the reaction with amino groups, J. Histochem. Cytochem. 26:412–414.PubMedCrossRefGoogle Scholar
  60. Nauta, W. J. H., Smith, G. P., Faull, R. L. M., and Domesick, V., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neuroscience 3:385–401.PubMedCrossRefGoogle Scholar
  61. Norgren, R., 1978, Projections from the nucleus of the solitary tract in the rat, Neuroscience 3:207–218.PubMedCrossRefGoogle Scholar
  62. Oldfield, B. J., Hou-Yu, A., and Silverman, A. J., 1983, Techniques for the simultaneous ultra-structural demonstration of anterogradely transported horseradish peroxidase and immu-nocytochemically identified neuropeptides, J. Histochem. Cytochem. 31:1145–1150.PubMedCrossRefGoogle Scholar
  63. Palkovits, M., and Jacobowitz, D. M., 1974, Topographic atlas of catecholamine and acetylcho-linesterase-containing neurons in the rat brain. I: Hindbrain (mesencephalon, rhombencephalon), J. Comp. Neurol. 157:29–42.PubMedCrossRefGoogle Scholar
  64. Paxinos, G., and Watson, C., 1986, The Rat Brain in Stereotaxic Coordinates, Academic Press, Orlando, FL.Google Scholar
  65. Pickel, V. M., 1981, Immunocytochemical methods, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. Robards, eds.), Plenum Press, New York, pp. 483–509.CrossRefGoogle Scholar
  66. Pickel, V. M., 1985, Ultrastructure of central catecholaminergic neurons, in: Neurohistochemistry Today (P. Panula, H. Paivarinta, and S. Soinilal, eds.), Alan R. Liss, New York, pp. 397–423.Google Scholar
  67. Pickel, V. M., and Beaudet, A., 1984, Combined use of autoradiography and immunocytochemical methods to show synaptic interactions between chemically defined neurons, in: Immu-nolabelling for Electron Microscopy (J. M. Polak and I. M. Varenell, eds.), Elsevier, Amsterdam, pp. 259–265.Google Scholar
  68. Pickel, V. M., Chan, J., and Milner, T. A., 1986, Autoradiographic detection of (125I)-secondary antiserum: A sensitive light and electron microscopic labeling method compatible with peroxidase immunocytochemistry for dual localization of neuronal antigens, J. Histochem. Cytochem. 34:707–718.PubMedCrossRefGoogle Scholar
  69. Polak, J. M., and Van Noorden, S. (eds.), 1983, Immunocytochemistry: Practical Applications in Pathology and Biology, Wright, Bristol.Google Scholar
  70. Priestley, J. V., Somogyi, P., and Cuello, A. C., 1981, Neurotransmitter-specific projection neurons revealed by combining peroxidase—antiperoxidase immunocytochemistry with retrograde transport of horseradish peroxidase, Brain Res. 220:231–240.PubMedCrossRefGoogle Scholar
  71. Rosene, D. L., and Mesulam, M.-M., 1978, Fixation variables in horseradish peroxidase neurohistochemistry. I. The effects of fixation time and perfusion procedures upon enzyme activity, J. Histochem. Cytochem. 26:28–39.PubMedCrossRefGoogle Scholar
  72. Ross, C. A., Armstrong, D. M., Ruggiero, D. A., Pickel, V. M., Joh, T. H., and Reis, D. J., 1981, Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: A combined immunocytochemical and retrograde transport demonstration, Neurosci. Lett. 25:257–262.PubMedCrossRefGoogle Scholar
  73. Ross, M. E., Reis, D. J., and Joh, T. H., 1981, Monoclonal antibodies to tyrosine hydroxylase: Production and characterization, Brain Res. 208:493–498.PubMedCrossRefGoogle Scholar
  74. Rye, D. B., Saper, C. B., and Warner, B. H., 1984, Stabilization of the tetramethyl benzidine (TMB) reaction product: Application for retrograde and anterograde tracing and combination with immunohistochemistry, J. Histochem. Cytochem. 32:1145–1153.PubMedCrossRefGoogle Scholar
  75. Sakumoto, T., Tohyama, M., Satoh, K., Kimoto, Y., Kinugasa, T., Tanizawa, O., Kurachi, K., and Shimuzu, N., 1978, Afferent fibre connections from lower brain stem to hypothalamus studies by the horseradish peroxidase method with special reference to noradrenaline innervation, Exp. Brain Res. 3:81–94.Google Scholar
  76. Sakumoto, T., Nagai, T., Kimura, H., and Maeda, T., 1980, Electron microscopic visualization of tetramethyl benzidine reaction product on horseradish peroxidase neurohistochemistry, Cell. Mol Biol. 26:211–216.Google Scholar
  77. Salpeter, M. M., Bachman, L., and Salpeter, E. E., 1969, Resolution in electron microscopic autoradiography, J. Cell Biol. 41:1–20.PubMedCrossRefGoogle Scholar
  78. Salpeter, M. M., Fertuck, H. C., and Salpeter, E. E., 1977, Resolution in electron microscopic autoradiography III. Iodine-125, the effect of heavy metal staining and reassessment of critical parameters, J. Cell Biol. 72:161–173.PubMedCrossRefGoogle Scholar
  79. Sawchenko, P. E., and Swanson, L. W., 1981, A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and immunocytochemical techniques, Brain Res. 210:31–51.PubMedCrossRefGoogle Scholar
  80. Sawchenko, P. E., and Swanson, L. W., 1982, The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat, Brain Res. Rev. 4:275–325.CrossRefGoogle Scholar
  81. Schachner, M., Hedley-Whyte, E. T., Hse, D. W., Schoonmaker, G., and Bignami, A., 1977, Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immu-noperoxidase labeling, J. Cell Biol. 75:67–73.PubMedCrossRefGoogle Scholar
  82. Schwab, M. E., Javoy-Agid, F., and Agid, Y., 1978, Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system, Brain Res. 152:145–150.PubMedCrossRefGoogle Scholar
  83. Sofroniew, M. V., Madler, M., Muller, O. A., and Scriba, P. C., 1978, A method for the consistent production of high quality antisera to small peptide hormones, Fresnius Z. Anal. Chem. 290:163.CrossRefGoogle Scholar
  84. Steinbusch, H. W. M., Verhofstad, A. A. J., and Joosten, H. W. J., 1978, Localization of serotonin in the central nervous system by immunohistochemistry: Description of a specific and sensitive technique and some applications, Neuroscience 3:811–819.PubMedCrossRefGoogle Scholar
  85. Sternberger, L. A., 1979, Immunocytochemistry, John Wiley & Sons, New York.Google Scholar
  86. Storm-Mathisen, J., Leknes, A. K., Bare, A. T., Vaaland, J. L., Edminson, P., Huang, F.-M. S., and Ottersen, O. P., 1983, First visualization of glutamate and GABA in neurons by immunocytochemistry, Nature 301:517–520.PubMedCrossRefGoogle Scholar
  87. Sturmer, C., Bielenberg, K., and Spatz, W. B., 1981, Electron microscopical identification of 3,3’,5,5’-tetramethyl benzidine reacted horseradish peroxidase after retrograde axonal transport, Neurosci. Lett. 23:1–6.PubMedCrossRefGoogle Scholar
  88. Sumal, K. K., Blessing, W. W., Joh, T. H., Reis, D. J., and Pickel, V. M., 1983 Synaptic interaction of vagal afferents and catecholaminergic neurons in the rat nucleus tractus solitarius, Brain Res. 277:31–40.PubMedCrossRefGoogle Scholar
  89. Uhl, G. R., Goodman, R. R., Kuhar, M. J., Childers, S. R., and Snyder, S. H., 1979a, Immu-nohistochemical mapping of enkephalin-containing cell bodies, fibers and nerve terminals in the brainstem of the rat, Brain Res. 166:75–79.PubMedCrossRefGoogle Scholar
  90. Uhl, G. R., Goodman, R. R., and Snyder, S. H., 1979b, Neurotensin-containing cell bodies, fibers and nerve terminals in the brain stem of the rat: Immunohistochemical mapping, Brain Res. 167:77–91.PubMedCrossRefGoogle Scholar
  91. Venegas, H., Hollander, H., and Distel, H., 1978. Early stages of uptake and transport of horseradish peroxidase by cortical structures and its use for the study of local neurons and their processes, J. Comp. Neurol. 177:193–212.CrossRefGoogle Scholar
  92. Velley, L., Milner, T. A., Chan, J., Morrison, S., and Pickel, V. M., 1989, Synaptic interactions between neurons containing enkephalin-like immunoreactivity and vagal afferents and ef-ferents, J. Comp. Neurol, (in preparation).Google Scholar
  93. Zaborszky, L., and Leranth, C., 1985, Simultaneous ultrastructural demonstration of retro-gradely transported horseradish peroxidase and choline acetyltransferase immunoreactivity, Histochemistry 82:529–537.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Virginia M. Pickel
    • 1
  • Teresa A. Milner
    • 1
  1. 1.Department of Neurology and Neuroscience, Division of NeurobiologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations