Combinations of Tracer Techniques, Especially HRP and PHA-L, with Transmitter Identification for Correlated Light and Electron Microscopic Studies

  • László Záborszky
  • Lennart Heimer


The tracing of neural circuits is greatly facilitated if a neuron’s projections and afferent synaptic connections as well as its transmitter content can be identified, and various attempts have been made in recent years to accomplish this goal. Since the analysis of synaptic relations requires the use of the electron microscope, the techniques applied in such investigations must be compatible with ultrastructural studies. When initial studies by Kristensson and Olsson (1971) and LaVail and LaVail (1972) demonstrated the usefulness of horseradish peroxidase (HRP) as a neuroanatomical tracer, it had already been shown that the end product of the HRP reaction is electron dense if DAB is used as a substrate and the tissue is postfixed in osmium tetroxide (Graham and Karnovsky, 1966; see review by Carson and Mesu-lam, 1982c). The HRP method, therefore, became increasingly popular in combined light—electron microscopic tracer studies.


Colloidal Gold Wheat Germ Agglutinin Retrograde Transport Tetanus Toxin Anterograde Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. C., 1981, Heavy metal intensification of DAB-based HRP reaction product, J. Histochem. Cytochem. 29:775.PubMedCrossRefGoogle Scholar
  2. Alheid, G. F., Edwards, S. B., Kitai, S. T., Park, M. R., and Switzer, R. C. III, 1981, Methods for delivering tracers, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M.J. RoBards, eds.), Plenum Press, New York, pp. 91–116.CrossRefGoogle Scholar
  3. Alstermark, B., and Kümmel, H., 1986, Transneuronal labelling of neurones projecting to forelimb motoneurones in cats performing different movements, Brain Res. 376:387–391.PubMedCrossRefGoogle Scholar
  4. Anderson, P. N., Mitchell, J., and Mayor, D., 1979, The uptake of horseradish peroxidase by damaged autonomic nerves in vitro, J. Anat. 128:401–406.Google Scholar
  5. Aschoff, A., and Schönitzer, K., 1982, Intra-axonal transport of horseradish peroxidase (HRP) and its use in neuroanatomy, in: Axoplasmic Transport in Physiology and Pathology (D. G. Weiss, and A. Gorio, eds.) Springer-Verlag, Berlin Heidelberg, New York, pp. 167–176.CrossRefGoogle Scholar
  6. Bak, I. J., Markham, C. H., Cook, M. L., and Stevens, J. G., 1977, Intraaxonal transport of herpes simplex virus in the rat central nervous system, Brain Res. 136:415–429.PubMedCrossRefGoogle Scholar
  7. Bak, I. J., Markham, C. H., Cook, M. L., and Stevens, J. G., 1978, Ultrastructural and immu- noperoxidase study of striatonigral neurons by means of retrograde axonal transport of herpes simplex virus, Brain Res. 143:361–368.PubMedCrossRefGoogle Scholar
  8. Baker, H., and Spencer, R. F., 1986, Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA—HRP) from the olfactory epithelium to the brain of the adult rat, Exp. Brain Res. 63:461–473.PubMedCrossRefGoogle Scholar
  9. Bakker, D. A., Richmond, F. J. R., and Abrahams, V. C., 1984, Central projections from cat suboccipital muscles: A study using transganglionic transport of horseradish peroxidase, J. Comp. Neurol. 228:409–421.PubMedCrossRefGoogle Scholar
  10. Balin, B. J., and Broadwell, R. D., 1987, Lectin-labelled membrane is transferred to the Golgi complex in mouse pituitary cells in vivo, J. Histochem. Cytochem. 35:489–498.CrossRefGoogle Scholar
  11. Basbaum, A. I., and Menetrey, D., 1987, Wheat germ agglutinin—apoHRP gold: A new retrograde tracer for light- and electron microscopic single- and double-label studies, J. Comp. Neurol. 261:306–318.PubMedCrossRefGoogle Scholar
  12. Beattie, M. S., Bresnahan, J. C., and King, J. S., 1978, Ultrastructural identification of dorsal root primary afferent terminals after anterograde filling with horseradish peroxidase, Brain Res. 153:127–134.PubMedCrossRefGoogle Scholar
  13. Bowker, R. M., Westlund, K. N., and Coulter, J. D., 1981, Origins of serotonergic projections to spinal cord in rat: An immunocytochemical-retrograde transport study. Brain Res. 226:187–199.PubMedCrossRefGoogle Scholar
  14. Bowker, R. W., Westlund, K. N., Sullivan, M. C., and Coulter, J. D., 1982, A combined retrograde transport and immunocytochemical staining method for demonstrating the origins of serotonergic projections, J. Histochem. Chytochem 30:805–810.CrossRefGoogle Scholar
  15. Brandon, C., 1985, Improved immunocytochemical staining through the use of fab fragments of primary antibody, fab-specific second antibody, and fab-horseradish peroxidase, J. Histochem. Cytochem 33:715–719.PubMedCrossRefGoogle Scholar
  16. Broadwell, R. D., and Balin, B. J., 1985, Endocytic and exocytic pathways of the neuronal secretory process and transsynaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo, J. Comp. Neurol. 242:632–650.CrossRefGoogle Scholar
  17. Broadwell, R. D., and Brightman, M. W., 1979, Cytochemistry of undamaged neurons transporting exogenous protein in vivo, J. Comp. Neurol. 185:31–74.CrossRefGoogle Scholar
  18. Broadwell, R. D., and Cataldo. A. M., 1984, The neuronal endoplasmic reticulum: Its cytochemistry and contribution to the endomembrane system. II. Axons and terminals, J. Comp. Neurol. 230:213–248.CrossRefGoogle Scholar
  19. Broadwell, R. D., Oliver, C., and Brightman, M. W., 1979, Localization of neurophysin within organelles associated with protein synthesis and packaging in the hypothalamoneurohyp-physial system: An immunocytochemical study, Proc. Natl. Acad. Sci. U.S.A. 76:5999–6003.PubMedCrossRefGoogle Scholar
  20. Broadwell, R. D., Oliver, C., and Brightman, M. W., 1980, Neuronal transport of acid hydrolases and perosidase within the lysosomal system of organelles: Involvement of agranular reticulum like cysterns, J. Comp. Neurol. 190:519–532.PubMedCrossRefGoogle Scholar
  21. Broadwell, R. D., Cataldo, A. M., and Balin, B. J., 1984, Further studies of the secretory process in hypothalamoneurohypophysial neurons. An analysis using immunocytochemistry, wheat germ agglutinin-peroxidase, and native peroxidase, J. Comp. Neurol. 228:155–167.PubMedCrossRefGoogle Scholar
  22. Brodai, P., Dietrichs, E., Bjaalie, J. G., Nordby, T., and Walberg, F., 1983, Is lectin-coupled horseradish peroxidase taken up and transported by undamaged as well as by damaged fibers in the central nervous system? Brain Res. 278:1–9.CrossRefGoogle Scholar
  23. Büttner-Ennever, J. A., Grob, P., Akert, K., and Bizzini, B., 1981, A transsynaptic autoradiographic study of the pathways controlling the extraocular eye muscles, using [125I]B-IIb tetanus toxin fragment, Ann. N.Y. Acad. Sci. 374:157–170.PubMedCrossRefGoogle Scholar
  24. Campbell, G., So, K.-F., and Lieberman, A. R., 1984, Normal postnatal development of retin-ogeniculate axons and terminals and identification of inappropriately-located transient synapses: Electron microscope studies of horseradish peroxidase-labelled retinal axons in the hamster, Neuroscience 13:743–759.PubMedCrossRefGoogle Scholar
  25. Carson, K. A., and Mesulam, M.-M., 1982a, Electron microscopic demonstration of neural connections using horseradish peroxidase: A comparison of the tetramethylbenzidine procedure with seven other histochemical methods, J. Histochem. Cytochem. 30:425–435.PubMedCrossRefGoogle Scholar
  26. Carson, K. A., and Mesulam, M.-M., 1982b, Ultrastructural evidence in mice that transgan-glionically transported horseradish peroxidase—wheat germ agglutinin conjugate reaches the intraspinal terminations of sensory neurons, Neurosci. Lett. 29:201–206.PubMedCrossRefGoogle Scholar
  27. Carson, K. A., and Mesulam, M.-M., 1982c, Electron microscopic tracing of neural connections with horseradish peroxidase, in: Tracing Neural Connections with Horseradish Peroxidase (M.-M. Mesulam, ed.), John Wiley, Sons, New York, pp. 153–184.Google Scholar
  28. Chen, W. P., Witkin, J. W., and Silverman, A. J., 1989, Beta-endorphin and gonadotropin releasing hormone neurosecretory cells in the male rat, J. Comp. Neurol, (in press).Google Scholar
  29. Colman, D. R., Scalia, F., and Cabrales, E., 1976, Light and electron microscopic observations on the anterograde transport of horseradish peroxidase in the optic pathway in the mouse and rat, Brain Res. 102:156–163.PubMedCrossRefGoogle Scholar
  30. Craig, A. D., and Mense, S., 1983, The distribution of afferent fibers from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of horseradish peroxidase, Neurosci. Lett. 41:233–238.PubMedCrossRefGoogle Scholar
  31. Cunningham, E. T., Jr., and LeVay, S., 1986, Laminar and synaptic organization of the projection from the thalamic nucleus centralis to primary visual cortex in the cat, J. Comp. Neurol. 254:65–77.CrossRefGoogle Scholar
  32. Danscher, G., 1981a, Localization of gold in biological tissue. A photochemical method for light and electronmicroscopy, Histochemistry 71:81–88.PubMedCrossRefGoogle Scholar
  33. Danscher, G., 1981b, Histochemical demonstration of heavy metals, Histochemistry 71:1–16.PubMedCrossRefGoogle Scholar
  34. Dautry-Varsat, A., and Lodish, H. F., 1984, How receptors bring proteins and particles into cells, Sci. Am. 250:52–58.PubMedCrossRefGoogle Scholar
  35. Dekker, J. J., and Kuypers, H. G. J. M., 1976, Quantitative E.M. study of projection terminals in the rat’s AV thalamic nucleus. Autoradiographic and degeneration techniques compared, Brain Res. 117:399–422.PubMedCrossRefGoogle Scholar
  36. DeOlmos, J., and Heimer, L., 1977, Mapping of collateral projections with the HRP-method, Neurosci. Lett. 6:107–114.CrossRefGoogle Scholar
  37. Deschenes, M., Landry P., and Labelle, A., 1979, The comparative effectiveness of the “brown and blue reactions” for tracing neuronal processes of cells injected intracellularly with horseradish peroxidase, Neurosci. Lett. 12:9–15.PubMedCrossRefGoogle Scholar
  38. Droz, B., 1973, Renewal of synaptic proteins, Brain Res. 62:383–394.PubMedCrossRefGoogle Scholar
  39. Dumas, M., Schwab, M. E., Baumann, R., and Thoenen, H., 1979, Retrograde transport of tetaus toxin through a chain of two neurons, Brain Res. 145:359–357.Google Scholar
  40. Escher, G., Schönenberger, N., and van der Loos, H., 1983, Detergent-soaked HRP-chips: A new method for precise and effective delivery of small quantities of the tracer to nervous tissue, J. Neurosci. Methods 9:87–94.PubMedCrossRefGoogle Scholar
  41. Esiri, M. M., 1982, Herpes simplex encephalitis: An immunohistological study of the distribution of viral antigen within the brain, J. Neurol. Sci. 54:209–226.PubMedCrossRefGoogle Scholar
  42. Evinger, C., and Erichsen, J. T., 1986, Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization, Brain Res. 380:383–388.PubMedCrossRefGoogle Scholar
  43. Fahrbach, S. E., Morrell, J. I., and Pfaff, D. W., 1984, Temporal pattern of HRP spread from an iontophoretic deposit site and description of a new HRP-gel implant method, J. Comp. Neurol. 225:605–619.PubMedCrossRefGoogle Scholar
  44. Fairen, A., Peters, A., and Saldanha, J., 1977, A new procedure for examining Golgi impregnated neurons by light and electron microscopy, J. Neurocytol. 6:311–337.PubMedCrossRefGoogle Scholar
  45. Fishman, P. S., and Carrigan, D. R., 1987, Retrograde transneuronal transfer of the C-fragment of tetanus toxin, Brain Res. 406:275–279.PubMedCrossRefGoogle Scholar
  46. Fitz-Gibbon, T., Kerr, L., and Burke, W., 1983, Uptake of horseradish peroxidase by axons of passage and its modification by poly-L-ornithine and diemethylsulphoxide, J. Neurosci. Methods 7:73–88.CrossRefGoogle Scholar
  47. Frens, G., 1973, Controlled nucleation for the regulation of the particle size in monodisperse gold solutions, Nature 241:20–21.Google Scholar
  48. Freund, T. F., Martin, K. A. C., and Whiteridge, D., 1985, Innervation of cat visual areas 17 and 18 by physiologically identified x- and y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements, J. Comp. Neurol. 242:263–272.PubMedCrossRefGoogle Scholar
  49. Gallyas, F., and Merchenthaler, I., 1988, Copper-H2O2 oxidation strikingly improves silver intensification of the nickel-diaminobenzidine (Ni-DAB) end-product of the peroxidase reaction, J. Histochem. Cytochem. 36:808–810.CrossRefGoogle Scholar
  50. Geoghegan, W. D., and Ackerman, G. A., 1977, Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat antihuman immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application, J. Histochem. Cyto-chem. 25:1187–1200.CrossRefGoogle Scholar
  51. Gerfen, Ch. R., and Sawchenko, P. E., 1984, An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: Immunohisto-chemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutin (PHA-L), Brain Res. 290:219–233.PubMedCrossRefGoogle Scholar
  52. Gerfen, C. R., O’Leary, D. D. M., and Cowan, W. M., 1982, A note on the transneuronal transport of wheat germ agglutinin-conjugated horseradish peroxidose in the avian and rodent visual system, Exp. Brain Res. 48:443–448.PubMedCrossRefGoogle Scholar
  53. Gillet, J. P., Derper, P., and Tsiang, H., 1986, Axonal transport of rabies virus in the central nervous sytem of the rat, J. Neuropathol. Exp. Neurol. 45:619–634.PubMedCrossRefGoogle Scholar
  54. Gobel, S., and Falls, W. M., 1979, Anatomical observations of horseradish peroxidase-filled terminal primary axonal arborizations in layer II of the substantia gelatinosa of Rolando, Brain Rres. 175:335–340.CrossRefGoogle Scholar
  55. Gonatas, N. K., Harper, C., Mizutani, T., and Gonatas, J., 1979, Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport, J. Histochem. Cytochem. 27:728–734.PubMedCrossRefGoogle Scholar
  56. Goodman, S. L., Hodges, G. M., Trejdosiewicz, L. K., and Livingston, D., 1981, Colloidal gold markers and probes for routine application in microscopy, J. Microsc. 123:201–213.PubMedCrossRefGoogle Scholar
  57. Grafstein B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60:1167–1283.PubMedGoogle Scholar
  58. Graham, R. C., Jr., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney, ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem. 14:291.PubMedCrossRefGoogle Scholar
  59. Grant, G., Arvidsson, J., Robertson, B., and Ygge, J., 1979, Transganglionic transport of horseradish peroxidase in primary sensory neurons, Neurosci. Lett. 12:23–28.PubMedCrossRefGoogle Scholar
  60. Graybiel, A. M., and Devor, M. A., 1974, A microelectrophoretic delivery technique for use with horseradish peroxidase, Brain Res. 68:167–173.PubMedCrossRefGoogle Scholar
  61. Griffin, G., Watkins, L. R., and Mayer, D. J., 1979, HRP pellets and slow-release gels: Two new techniques for greater localization and sensitivity, Brain Res. 168:595–601.PubMedCrossRefGoogle Scholar
  62. Grob, P., Büttner-Ennever, J., Lang, W., Akert, K., and Fah, A., 1982, A comparison of the retrograde tracer properties of [125I]wheat germ agglutinin (WGA) with HRP after injection into the corpus callosum, Brain Res. 236:193–198.PubMedCrossRefGoogle Scholar
  63. Hancock, M. B., 1984, Visualization of peptide-immunoreactive processes on serotonin immu-noreactive cells using two-color immunoperoxidase staining, J. Histochem. Cytochem. 32:311–314.PubMedCrossRefGoogle Scholar
  64. Hanker, J. S., Yates, P. E., Metz, C. B., and Rustioni, A., 1977, A new specific sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase, Histochem. J. 9:789–792.PubMedCrossRefGoogle Scholar
  65. Harrison, P. J., Hultborn, H., Jankowska, E., Katz, R., Storai, B., and Zytnicki, D., 1984, Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurons in rats and cats, Neurosci. Lett. 45:15–19.PubMedCrossRefGoogle Scholar
  66. Hayes, N. L., and Rustioni, A., 1979, Dual projections of single neurons are visualized simultaneously: Use of enzymatically inactive[3H]HRP, Brain Res. 165:321–326.PubMedCrossRefGoogle Scholar
  67. Heimer, L., 1970, Bridging the gap between light and electron microscopy in the experimental tracing of fiber connections, in: Contemporary Research Methods in Neuroanatomy (W. J. H. Nauta and S. O. E. Ebbeson, eds.), Springer-Verlag, Berlin, pp. 162–172.CrossRefGoogle Scholar
  68. Heimer, L., 1972, The olfactory connections of the diencephalon in the rat, Brain Behav. Evol. 6:484–523.PubMedCrossRefGoogle Scholar
  69. Hendry, I. A., 1977, The effect of the retrograde axonal transport of nerve growth factor on the morphology of adrenergic neurones, Brain Res. 134:213–223.PubMedCrossRefGoogle Scholar
  70. Henry, M. A., Westrum, L. E., and Johnson, L. R., 1985, Enhanced ultrastructural visualization of the horseradish peroxidase-tetramethylbenzidine reaction product, J. Histochem. Cytochem. 33:1256–1259.PubMedCrossRefGoogle Scholar
  71. Herkenhem, M., and Nauta, W. J. H., 1977, Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study with a note on the fiber-of-passage problem, J. Comp. Neurol. 173:123–146.CrossRefGoogle Scholar
  72. Holland, V. R., Saunders, B. C., Rose, F. L., and Walpole, A. L., 1974, A safer substitute for benzidine in the detection of blood, Tetrahedron 30:3299–3302.CrossRefGoogle Scholar
  73. Hopkins, D. A., King, T. R., Morrison, M. A., and Nance, D. M., 1984, Selective effect of kainic acid on axonal transport of anatomical tracers, Soc. Neurosci. Abstr. 10:423.Google Scholar
  74. Hsu, S. M., Raine, L., and Fanger, H., 1981, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques, J. Histochem. Cytochem. 29:577–580.PubMedCrossRefGoogle Scholar
  75. Hsu, S. M., and Soban, E., 1982, Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry, J. Histochem. Cytochem. 30:1079–1082.PubMedCrossRefGoogle Scholar
  76. Huerta, M., Frankfurter, A., and Harting, J. K., 1983, Studies of the principal sensory and spinal trigeminal nuclei of the rat: Projections of the superior colliculus, inferior olive, and cerebellum, J Comp. Neurol. 220:147–167.PubMedCrossRefGoogle Scholar
  77. Itaya, S. K., and van Hoesen, G. W., 1982, WGA—HRP as a transneuronal marker in the visual pathways of monkey and rat, Brain Res. 236:199–204.PubMedCrossRefGoogle Scholar
  78. Itoh, K., Konishi, A., Nomura, S., Mizuno, N., Nakamura, Y., and Sugmimoto, T., 1979, Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: Cobalt—glucose oxidase method, Brain Res. 175:341–346.PubMedCrossRefGoogle Scholar
  79. Iversen, L. L., Stockel, K., and Thoesen, H., 1975, Autoradiographic studies of the retrograde axonal transport of nerve growth factor in mouse sympathetic neurons, Brain Res. 88:37–43.PubMedCrossRefGoogle Scholar
  80. Jankowska, E., 1985, Further indications for enhancement of retrograde transneuronal transport of WGA-HRP by synaptic activity, Brain Res. 341:403–408.PubMedCrossRefGoogle Scholar
  81. Jankowska, E., and Skoog, B., 1986, Labelling of midlumbar neurones projecting to cat hindlimb motoneurones by transneuronal transport of a horseradish peroxidase conjugate, 1986, Neurosci. Lett. 71:163–168.PubMedCrossRefGoogle Scholar
  82. Johnson, E. M., Jr., Andres, R. Y., and Bradshaw, R. A., 1978, Characterization of the retrograde transport of nerve growth factor (NGF) using high specific activity [125I]NGF, Brain Res. 150:319–331.PubMedCrossRefGoogle Scholar
  83. Katz, L. C., Burkhalter, A., and Dreyer, W. J., 1984, Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex, Nature 310:498–500.PubMedCrossRefGoogle Scholar
  84. Keefer, D. A., Spatz, W. B., and Misgeld, U., 1976, Golgi-like staining of neocortical neurons using retrogradely transported horseradish peroxidase, Neurosci. Lett. 3:233–237.PubMedCrossRefGoogle Scholar
  85. Kosaka, T., Nagatsu, I., Wu, J.-Y., and Hama, K., 1986, Use of high concentrations of glutar-aldehyde for immunocytochemistry of transmitter-synthesizing enzymes in the central nervous system, Neuroscience 18:975–990.PubMedCrossRefGoogle Scholar
  86. Kristensson, L., and Olsson, Y. 1971, Retrograde axonal transport of protein, Brain Res. 29:363–365.PubMedCrossRefGoogle Scholar
  87. Kristensson, K., and Olsson, Y., 1976, Retrograde transport of horseradish peroxidase in transected axons. 3. Entry into injured axons and subsequent localization in perikaryon, Brain Res. 115:201–213.PubMedCrossRefGoogle Scholar
  88. Kristensson, K., Ghetti, B., and Wisniewski, H. M., 1974, Study on the propagation of herpes simplex virus (type 2) into the brain after intraocular injection, Brain Res. 69:189–201.PubMedCrossRefGoogle Scholar
  89. Kristensson, K., Vahlne, A., Persson, L. A., and Lycke, E., 1978, Neural spread of herpes simplex virus types 1 and 2 in mice after, corneal or subcutaneous (footpad) inoculation, J. Neurol. Sci. 35:331–340.PubMedCrossRefGoogle Scholar
  90. Kristensson, K., Nennesmo, I., Persson, L. A., and Lycke, E., 1982, Neuron to neuron transmission of herpes simplex virus: Transport of virus from skin to brainstem nuclei, J. Neurol. Sci. 54:149–156.PubMedCrossRefGoogle Scholar
  91. Kucera, P., Dolivo, M., Coulon, P., and Flamand, A., 1985, Pathways of the early propagation of virulent and avirulent rabies strains from the eye to the brain, J. Virol. 55:158–162.PubMedGoogle Scholar
  92. Lacey, E., and Grant, W. N., 1987, Photobiotin as a sensitive probe for protein labeling, Anal. Biochem. 163:151–158.PubMedCrossRefGoogle Scholar
  93. Lakos, S., and Basbaum, A. L., 1986, Benzidine dihydrochloride as a chromogen for single- and double-label light and electron microscopic immunocytochemical studies, J. Histochem. Cy-tochem. 34:1047–1056.CrossRefGoogle Scholar
  94. Lasek, R. J., 1980, Axonal transport; A dynamic view of neuronal structures, Trends Neurosci. 3:87–91.CrossRefGoogle Scholar
  95. LaVail, J. H., and LaVail, M. M., 1972, Retrograde axonal transport in the central nervous system, Science 176:1416–1417.PubMedCrossRefGoogle Scholar
  96. LaVail, J. H., and LaVail, M. M., 1974, The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: A light and electron microscopic study, J. Comp. Neurol 157:303–358.PubMedCrossRefGoogle Scholar
  97. Lechan, R. M., Nestler, J. L., and Jacobson, S., 1981, Immunohistochemical localization of re-trogradely and anterogradely transported wheat germ agglutinin (WGA) within the central nervous sytem of the rat: Application to immunostaining of a second antigen within the same neuron, J. Histochem. Cytochem. 29:1255–1262.PubMedCrossRefGoogle Scholar
  98. Lemann, W., Saper, C. B., Rye D. B., and Wainer, B. H., 1985, Stabilization of TMB reaction product for electron microscopic retrograde and anterograde fiber tracing, Brain Res. Bull. 14:277–281.PubMedCrossRefGoogle Scholar
  99. Lenn, N. J., Wong, V., and Hamil, G. S., 1983, Left-right pairing at the crest synapses of rat interpeduncular nucleus, Neuroscience 9:383–389.PubMedCrossRefGoogle Scholar
  100. Léránth, C., and Fehér, E., 1983, Synaptology and sources of vasoactive intestinal polypeptide and substance P containing axons of the celiac ganglion. An experimental electron microscopic immunohistochemical study, Neuroscience 10:947–958.PubMedCrossRefGoogle Scholar
  101. Léránth, C., MacLusky, N. J., Shanabrough, M., and Naftolin, F., 1988, Catecholaminergic innervation of LHRH and GAD immunopositive neurons in the rat medial preoptic area: An electron microscopic double immunostaining and degeneration study, Neuroendocrinol-ogy 48:591–602.CrossRefGoogle Scholar
  102. LeVay, S., and Gilbert, C. D., 1976, Laminar patterns of geniculocortical projections in the cat, Brain Res. 113:1–19.PubMedCrossRefGoogle Scholar
  103. Levey, A. L., Bolam, J. P., Rye, D. B., Hallanger, A. E., Demuth, R. M., Mesulam, M.-M., and Wainer, B. H., 1986, A light and electron microscopic procedure for sequential double antigen localization using diaminobenzidine and benzidine dihydrochloride, J. Histochem. Cytochem. 34:1449–1457.PubMedCrossRefGoogle Scholar
  104. Lewis, P. R., and Henderson, Z., 1980, Tracing putative cholinergic pathways by a dual cyto-chemical technique, Brain Res. 196:489–493.PubMedCrossRefGoogle Scholar
  105. Lipp, H.-P., and Schwegler, H., 1980, Improved transport of horseradish peroxidase after injection with a non-ionic detergent (nonidet P-40) into mouse cortex and observations on the relationship between spread at the injection site and amount of transported label, Neurosci. Lett. 20:49–54.PubMedCrossRefGoogle Scholar
  106. Luiten, P. G. M., Wouterlood, F. G., Matsuyama, T., Strosberg, A. D., Buwalda, B., and Gay-kama, R. P. A., 1988, Immunocytochemical applications in neuroanatomy. Demonstration of connections, transmitters and receptors, Histochemistry 90:85–97.PubMedCrossRefGoogle Scholar
  107. Lundquist, I., and Josefsson, J.-O., 1971, Sensitive method for determination of peroxidase activity in tissue by means of coupled oxidation reaction, Anal. Biochem. 41:567–577.PubMedCrossRefGoogle Scholar
  108. Luppi, P.-H., Sakai, K., Salvert, D., Fort, P., and Jouvet M., 1987, Peptidergic hypothalamic afferents to the cat nucleus raphe pallidus as revealed by a double immunostaining techniques using unconjugated cholera toxin as a retrograde tracer, Brain Res. 402:339–345.PubMedCrossRefGoogle Scholar
  109. Malmgren, L., and Olsson, Y., 1977, A sensitive histochemical method for light- and electron microscopic demonstration of horseradish peroxidase, J. Histochem. Cytochem. 25:1280–1283.PubMedCrossRefGoogle Scholar
  110. Malmgren, L., and Olsson, Y., 1978, A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport, Brain Res. 148:279–294.PubMedCrossRefGoogle Scholar
  111. Malmgren, L. T., and Olsson, Y. 1979, Early influx of horseradish peroxidase into axons of the hypoglossal nerve during wallerian degeneration, Neurosci. Lett. 13:13–18.PubMedCrossRefGoogle Scholar
  112. Max, S. R., Schwab, M., Dumas, M., and Thoenen, H., 1978, Retrograde axonal transport of nerve growth factor in the ciliary ganglion of the chick and the rat, Brain Res. 159:411–415.PubMedCrossRefGoogle Scholar
  113. McLean, J. H., Shipley, M. T., and Bernstein, D. J., 1988, Transneuronal transport of herpes simplex virus in the rat brain, Soc. Neurosci. Abst. 14:548.Google Scholar
  114. Menetrey, D., 1985, Retrograde tracing of neural pathways with a protein-gold complex. I. Light microscopic detection after silver intensification, Histochemnistry 83:391–395.CrossRefGoogle Scholar
  115. Menetrey, D., and Lee, C. L., 1985, Retrograde tracing of neural pathways with a protein gold complex, II. Electron microscopic demonstration of projections and collaterals, Histochemistry 83:525–530.PubMedCrossRefGoogle Scholar
  116. Merchenthaler, I., Gallyas, F., and Liposits, Z., 1989, Silver intensification in immunocytochem-istry, in: Techniques in Immunocytochemistry, Vol. 4, (G. R. Bullock and P. Petrusz, eds.), Academic Press, London (in press).Google Scholar
  117. Mesulam, M.-M., 1978, Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue raction-product with superior sensitivity for visualizing neural afferents and efferents, J. Histochem. Cytochem. 26:106–117.PubMedCrossRefGoogle Scholar
  118. Mesulam, M.-M., 1982, Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways—axonal transport, enzyme histochemistry and light microscopic analysis, in: Tracing Neural Connections with Horseradish Peroxidase (M.-M. Mesulam, ed.), John Wiley & Sons, New York, pp. 1–151.Google Scholar
  119. Mesulam, M.-M., and Brushart, T. M., 1979, Transganglionic and anterograde transport of horseradish peroxidase across dorsal root ganglia: A tetramethyl benzidine method for tracing central sensory connections of muscles and peripheral nerves, Neuroscience 4:1107–1117.PubMedCrossRefGoogle Scholar
  120. Mesulam, M.-M., and Mufson, E. J., 1980, The rapid anterograde transport of horseradish peroxidase, Neuroscience 5:1277–1286.PubMedCrossRefGoogle Scholar
  121. Mesulam, M.-M., and Rosene, D. L., 1979, Sensitivity in horseradish peroxidase neurohistochemistry: A comparative and quantitative analysis of nine methods, J. Histochem. Cytochem. 27:763–773.PubMedCrossRefGoogle Scholar
  122. Morrell, J. I., Greenberger, L. M., and Pfaff, D. W., 1981, Comparison of horseradish peroxidase visualization methods: Quantitative results and further technical specifics, J. Histochem. Cytochem. 29:903–916.PubMedCrossRefGoogle Scholar
  123. Mugnaini, E., and Friedrich, V. L., Jr., 1981, Electron microscopy: Identification and study of normal and degenerating neural elements by electron microscopy, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. RoBards, eds.), Plenum Press, New York, pp. 377–406.CrossRefGoogle Scholar
  124. Nässekl, D. R., 1981, Transneuronal labeling with horseradish peroxidase in the visual system of the house fly, Brain Res. 206:431–438.CrossRefGoogle Scholar
  125. Nauta, H.J. W., Kaiserman-Abramof, I. R., and Lasek, R. J., 1975, Electron microscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat: Possible involvement of the agranular reticulum, Brain Res. 85:373–384.PubMedCrossRefGoogle Scholar
  126. Neal, T. L., and Carey, R. C., 1986, Modification of transport specificity of horseradish peroxidase: Anterograde and transneuronal properties, Soc. Neurosci. Abstr. 12:1565.Google Scholar
  127. Norgren, R. B., Jr., Lehman, M. N., McLean, J., and Shipley, M. T., 1988, Labeling of hypothalamic neurons after intraocular injection of herpes simplex virus, Anat. Rec. 220:70A.Google Scholar
  128. Novikoff, A. B., 1973, Lysosomes: A personal account, in: Lysosomes and Storage Diseases (H. G. Hers and F. Van Hoff, eds.), Academic press, New York, pp. 1–41.Google Scholar
  129. Nyberg, G., 1988, Representation of the forepaw in the feline cuneate nucleus: A transganglionic transport study, J. Comp. Neurol. 271:143–152.PubMedCrossRefGoogle Scholar
  130. Nyberg, G., and Blomqvist, A., 1985, The somatotopic organization of forelimb cutaneous nerves in the brachial dorsal horn: An anatomical study in the cat, J. Comp. Neurol. 242:28–39.PubMedCrossRefGoogle Scholar
  131. Ochs, S., 1987, Axoplasmic transport, in: Encyclopedia of Neuroscience (G. Adelman, ed.), Birkau-ser, Boston, pp. 105–108.Google Scholar
  132. Oldfield, B. J., Hou-Yu A., and Silverman, A.-J., 1983, Technique for the simultaneous ultra-structural demonstration of anterogradely transported horseradish peroxidase and an im-munocytochemically identified neuropeptide, J. Histochem. Cytochem. 31:1145–1150.PubMedCrossRefGoogle Scholar
  133. Olsson, Y., Arvidson, B., Hartman, M., Pettersson, A., and Tengvar, C., 1983, Horseradish peroxidase histochemistry. A comparison between various methods used for identifying neurons labeled by retrograde axonal transport, J. Neurosci. Methods 7:49–59.PubMedCrossRefGoogle Scholar
  134. Olucha, F., Martinez-Garcia, F., and Lopez-Garcia, C., 1985, A new stabilizing agent for the tétramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP), J. Neurosci. Methods 13:131–138.PubMedCrossRefGoogle Scholar
  135. Openshaw, H., and Ellis, W. G., 1983, Herpes simplex virus infection of motor neurons: Hy-poglassal model, Infect. Immun. 42:409–413.PubMedGoogle Scholar
  136. Palkovits, M., Leranth, C., Jew, J. Y., and Williams, T. H., 1982, Simultaneous characterization of pre- and postsynaptic neuron contact sites in brain, Proc. Natl. Acad. Sci. U.S.A. 79:2705–2708.PubMedCrossRefGoogle Scholar
  137. Pastan, I., and Willingham, M. C., 1983, Receptor-mediated endocytosis: Coated pits, recepto-somes and the golgi, Trends Biochem. Sci. 8:250–254.CrossRefGoogle Scholar
  138. Peschanski, M., and Ralston, H. Ill, 1985, Light and electron microscopic evidence of transneuronal labeling with WGA—HRP to trace somatosensory pathways to the thalamus, J. Comp. Neurol. 236:29–41.PubMedCrossRefGoogle Scholar
  139. Porter, J. D., Guthrie, B. L., and Sparks, D. L., 1985, Selective retrograde transneuronal transport of wheat germ agglutinin-conjugated horseradish peroxidase in the oculomotor system, Exp. Brain Res. 57:411–416.PubMedCrossRefGoogle Scholar
  140. Priestley, J. W., Somogyi, P., and Cuello, A. C., 1981, Neurotransmitter-specific projection neurons revealed by combining PAP immunohistochemistry with retrograde transport of HRP, Brain Res. 220:231–240.PubMedCrossRefGoogle Scholar
  141. Purves, D., and Lichtman, J. W., 1985, Principles of Neural Development, Sinauer Associates, Boston.Google Scholar
  142. Quattrochi, J. J., Madison, R., Sidman, R. L., and Kljavin, I., 1987, Colloidal gold fluorescent microspheres: A new retrograde marker visualized by light and electron microscopy, Exp. Neurol. 96:219–224.PubMedCrossRefGoogle Scholar
  143. Reaves, T. A., Jr., Cumming, R., Libber, M. T., and Hayward, J. N., 1982, A technique combining intracellular dye-marking, immunocytochemical identification and ultrastructural analysis of physiologically identified single neurons, Neurosci. Lett. 29:195–199.PubMedCrossRefGoogle Scholar
  144. Reiner, A., and Gamlin, P., 1980, On noncarcinogenic chromogens for horseradish peroxidase histochemistry, J. Histochem. Cytochem. 28:187–193.PubMedCrossRefGoogle Scholar
  145. Rhodes, C. H., Stieber, A., and Gonatas, N. K., 1987, Transneuronally transported wheat germ agglutinin labels glia as well as neurons in the rat visual system, J. Comp. Neurol. 261:460–465.PubMedCrossRefGoogle Scholar
  146. Robertson, B., and Grant, G., 1985, A comparison between wheat germ agglutinin- and chol-eragenoid-horseradish peroxidase as anterogradely transported markers in central branches of primary sensory neurones in the rat with some observations in the cat, Neuroscience 14:895–905.PubMedCrossRefGoogle Scholar
  147. Rogers, R. C., Butcher, L. L., and Novin, D., 1980, Effects of urethane and pentobarbital anesthesia on the demonstration of retrograde and anterograde transport of horseradish peroxidase, Brain Res. 187:197–200.PubMedCrossRefGoogle Scholar
  148. Rosene, D. L., and Mesulam, M.-M., 1978, Fixation variables in horseradish peroxidase neuro-histochemistry. I. The effects of fixation time and perfusion procedures upon enzyme activity, J. Histochem. Cytochem. 26:28–39.PubMedCrossRefGoogle Scholar
  149. Roth, J., Bendayan, M., and Orci, L., 1978, Ultrastructural localization of intracellular antigens by the use of protein A—gold complex, J. Histochem. Cytochem. 26:1074–1081.PubMedCrossRefGoogle Scholar
  150. Rouiller, E. M., Capt, M., Dolivo, M., and De Ribaupierre, F., 1986, Tensor tympani reflex pathways studied with retrograde horseradish peroxidase and transneuronal viral tracing techniques, Neurosci. Lett. 72:247–252.PubMedCrossRefGoogle Scholar
  151. Ruda, M., and Coulter, J. D., 1982, Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry, Brain Res. 249:237–246.PubMedCrossRefGoogle Scholar
  152. Ruda, M. A., Coffield, J., and Dubner, R., 1984, Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry, J. Neurosci. 4:2117–2132.PubMedGoogle Scholar
  153. Rye, D. B., Saper, C. B., and Wainer, B. H., 1984, Stabilization of the tetramethylbenzidine (TMB) reaction product: Application for retrograde and anterograde tracing, and combination with immunohistochemistry, J. Histochem. Cytochem. 32:1145–1153.PubMedCrossRefGoogle Scholar
  154. Sabin, A. B., 1956, Pathogenesis of poliomyelitis: Reappraisal in the light of new data, Science 123:1151–1157.PubMedCrossRefGoogle Scholar
  155. Sakumoto, T., Nagai T., Kimura, H., and Maeda, T., 1980, Electron microscopic visualization of tetramethyl benzidine reaction product on horseradish peroxidase neurohistochemistry, Cell Mol Biol 26:211–216.Google Scholar
  156. Sawchenko, P. E., and Gerfen, C. R., 1985, Plant lectins and bacterial toxins as tools for tracing neuronal connections, Trends Neurosci. 5:378–384.CrossRefGoogle Scholar
  157. Schmued, L. C., Kyriakidis, K., Fallon, J. H., and Ribak, C. E., 1989, Neurons containing retro-gradely-transported fluorogold exhibit a variety of lysosomal profiles: A combined bright-field, fluorescent, and electron microscopic study, J. Neurocytol (in press).Google Scholar
  158. Schnyder, H., and Künzle, H., 1983, Differential labeling in neuronal tracing with wheat germ agglutinin, Neurosci. Lett. 35:115–120.PubMedCrossRefGoogle Scholar
  159. Schubert, P., and Kreutzberg, G. W., 1982, Transneuronal transport: A way for the neuron to communicate with its environment, in: Axoplasmic Transport in Physiology and Pathology (D. G. Weiss and A. Gorio, eds.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 32–43.CrossRefGoogle Scholar
  160. Schwab. M. E., and Thoenen, H., 1978, Selective binding, uptake and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer, J. Cell Biol. 77:1–13.CrossRefGoogle Scholar
  161. Schwab, M., Agid, Y., Glowinski, J., and Thoenen, H., 1977, Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections of the rostral part of the rat neostriatum, Brain Res. 126:211–224.PubMedCrossRefGoogle Scholar
  162. Schwab. M. E., Suda, K., and Thoenen, H., 1979, Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequently to its retrograde axonal transport, J. Cell Biol. 82:798–810.CrossRefGoogle Scholar
  163. Schwanzel-Fukuda, M., Morrell, J. I., and Pfaff, D. W., 1983, Polyacrylamide gel provides slow release delivery of wheat germ agglutinin (WGA) for retrograde neuroanatomical tracing, J. Histochem. Cytochem. 31:831–836.Google Scholar
  164. Segade, L. A. G., 1987, Pyrocatechol as a stabilizing agent for o-tolidine and o-dianisidene: A sensitive new method for HRP neurochistochemistry, J. Hirnforsch. 28:331–340.PubMedGoogle Scholar
  165. Seiler, M., and Schwab, M., 1984, Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat, Brain Res. 300:33–39.PubMedCrossRefGoogle Scholar
  166. Shiosaka, S., Shimada, S., and Tohyama, M., 1986, Sensitive double-labeling technique of retrograde biotinized tracer (biotin-WGA) and immunocytochemistry: Light and electron microscopic analysis, J. Neurosci. Methods 16:9–18.PubMedCrossRefGoogle Scholar
  167. Silver, M. A., and Jacobowitz, D. M., 1979, Specific uptake and retrograde flow of antibody to dopamine-β-hydroxylase by central nervous system noradrenergic neurons in vivo, Brain Res. 167:65–75.CrossRefGoogle Scholar
  168. Somogyi, P., and Takagi, H., 1982, A note on the use of picric acid—paraformaldehyde—glutar-aldehyde fixative for correlated light and electron microscopic immunocytochemistry, Neuroscience 7:1779–1784.PubMedCrossRefGoogle Scholar
  169. Somogyi, P., Hodgson, A. J., and Smith, A. D., 1979, An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material, Neuroscience 4:1805–1852.PubMedCrossRefGoogle Scholar
  170. Spreafico, R., Cheema, S., Ellis, L. C., Jr., and Rustioni, A., 1982, On comparison of horseradish peroxidase visualization methods, J. Histochem. Cytochem. 30:487–488.PubMedCrossRefGoogle Scholar
  171. Staines, W. A., Kimura, H., Fibiger, H. C., and McGeer, E. G., 1980, Peroxidase-labeled lectin as a neuroanatomical tracer: Evaluation in a CNS pathway, Brain Res. 197:485–490.PubMedCrossRefGoogle Scholar
  172. Steindler, D. A., 1982, Differences in the labeling of axons of passage by wheat germ agglutinin after uptake by cut peripheral nerve versus injections within the central nervous system, Brain Res. 250:159–167.PubMedCrossRefGoogle Scholar
  173. Steindler, D. A., and Bradley, R. H., 1983, N-[Acetyl-3H]wheat germ agglutinin: Anatomical and biochemical studies of a sensitive bidirectionally transported axonal tracer, Neuroscience 10:219–241.PubMedCrossRefGoogle Scholar
  174. Steward, O., 1981, Horseradish peroxidase and fluorescent substances and their combination with other techniques, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M.J. RoBards, eds.), Plenum Press, New York, pp. 279–310.CrossRefGoogle Scholar
  175. Stoeckel, K., Schwab, M., and Thoenen, H., 1975, Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: A biochemical and morphological study, Brain Res. 89:1–14.PubMedCrossRefGoogle Scholar
  176. Strauss, W., 1982, Imidazole increases the sensitivity of the cytochemical reaction for peroxidase with diaminobenzidine at a neutral pH, J. Histochem. Cytochem. 30:491–493.CrossRefGoogle Scholar
  177. Streit, P., 1980, Selective retrograde labeling indicating the transmitter of neuronal pathways, J. Comp. Neurol. 191:429–463.PubMedCrossRefGoogle Scholar
  178. Streit, P., and Reubi, J. C., 1977, A new and sensitive staining method for axonally transported horseradish peroxidase (HRP) in the pigeon visual system, Brain Res. 126:530–537.PubMedCrossRefGoogle Scholar
  179. Stürmer, C., Bielenberg, K., and Spatz, W. B., 1981, Electron microscopical identification of 3,3’, 5,5’-tetramethylbenzidine-reacted horseradish peroxidase after retrograde axo-plasmic transport, Neurosci. Lett. 23:1–5.PubMedCrossRefGoogle Scholar
  180. Suresh, M. R., Cuello, A. C., and Milstein, C., 1986, Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays, Proc. Natl. Acad. Sci. U.S.A. 83:7989–7993.PubMedCrossRefGoogle Scholar
  181. Takada, M., and Hattori, T., 1986, Transneuronal transport of WGA—HRP from the ipsi- to contralateral medial habenular nucleus through the interpeduncular nucleus in the rat, Brain Res. 384:77–83.PubMedCrossRefGoogle Scholar
  182. Takeuchi, Y., Allen, G. V., and Hopkins, D. A., 1985, Transnuclear transport and axon collateral projections of the mamillary nuclei in the rat, Brain Res. Bull. 14:453–468.PubMedCrossRefGoogle Scholar
  183. Taylor, A. M., and Lieberman, A. R., 1987, Ultrastructural organisation of the projection from the superior colliculus to the ventral lateral geniculate nucleus of the rat, J. Comp. Neurol. 256:454–462.PubMedCrossRefGoogle Scholar
  184. Titus, J. A., Haugland, R., Sharrow, S. O., and Segal, D. M., 1982, Texas red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorochro-metric and fluorescence microscopic studies, J. Immunol. Methods 50:193–204.PubMedCrossRefGoogle Scholar
  185. Triller, A., and Korn, H., 1981, Interneuronal transfer of horseradish peroxidase associated with exo/endocytic activity on adjacent membranes, Exp. Brain Res. 43:233–236.PubMedCrossRefGoogle Scholar
  186. Trojanowski, J. Q., 1983, Native and derivatized lectins for in vivo studies of neuronal connectivity and neuronal cell biology, J. Neurosci. Methods 9:185–204.PubMedCrossRefGoogle Scholar
  187. Trojanowski, J. Q., and Gonatas, N. K., 1983, A morphometric study of the endocytosis of wheat germ agglutinin-horseradish peroxidase conjugates by retinal ganglion cells in the rat, Brain Res. 272:201–210.PubMedCrossRefGoogle Scholar
  188. Trojanowski, J. Q., and Schmidt, M. L., 1984, Interneuronal transfer of axonally transported proteins: Studies with HRP and HRP conjugates of wheat germ agglutinin, cholera toxin and the B subunit of cholera toxin, Brain Res. 311:366–369.PubMedCrossRefGoogle Scholar
  189. Trojanowski, J. Q., Gonatas, J. O., and Gonatas, N. K., 1982, Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrogradely transported markers than free HRP, Brain Res. 231:33–50.PubMedCrossRefGoogle Scholar
  190. Tsai, Y., Norgren, R. B., and Lehman, M. N., 1988, Double-label electron microscopic immunocytochemistry using tetramethylbenzidine (TMB) as a chromagen, Soc. Neurosci. Abst. 14:546.Google Scholar
  191. Turner, P. T., and Harris, A. B., 1974, Ultrastructure of exogenous peroxidase in cerebral cortex, Brain Res. 74:305–326.PubMedCrossRefGoogle Scholar
  192. Tyler, K. L., McPhee, D. A., and Fields, B. N., 1986, Distinct pathways of viral spread in the host determined by reovirus S1 gene segment, Science 233:770–774.PubMedCrossRefGoogle Scholar
  193. Ugolini, G., Kuypers, H. G. J. M., and Simmons, A., 1987, Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV 1) from motoneurons, Brain Res. 422:242–256.PubMedCrossRefGoogle Scholar
  194. Vahlne, A., Svennerholm, B., Sandberg, M., Hamberger, A., and Lycke, E., 1980, Differences in attachment between herpes simplex type 1 and type 2 viruses to neurons and glial cells, Infect. Immun. 28:675–680.PubMedGoogle Scholar
  195. van den Pol, A. N., 1984, Colloidal gold and biotin-avidin conjugates as ultrastructural markers for neural antigens, Q.J. Exp. Physiol. 69:1–33.PubMedGoogle Scholar
  196. van den Pol, A., 1985, Dual ultrastructural localization of two neurotransmitter-related antigens: Colloidal gold-labeled neurophysin-immunoreactive supraoptic neurons receive per-oxidase-labeled glutamate decarboxylase- or gold-labeled GABA-immunoreactive synapses, J. Neurosci. 5:2940–2954.PubMedGoogle Scholar
  197. Voigt, T., LeVay, S., and Stamnes, M. A., 1988, Morphological and immunocytochemical observations on the visual callosal projections in the cat, J. Comp. Neurol. 272:450–460.PubMedCrossRefGoogle Scholar
  198. Wainer, B. H., and Rye, D. B., 1984, Retrograde horseradish tracing combined with localization of choline acetyltransferase immunoreactivity, J. Histochem. Cytochem. 32:439–443.PubMedCrossRefGoogle Scholar
  199. Wakefield, C., and Shonnard, N., 1979, Observations of HRP labeling following injection through a chronically implanted cannula—a method to avoid diffusion of HRP into injured fibers, Brain Res. 168:221–226.PubMedCrossRefGoogle Scholar
  200. Wan, X.-C. S., Trojanowski, J. Q., and Gonatas, J. O., 1982, Cholera toxin and wheat germ agglutinin conjugates as neuroanatomical probes: Their uptake and clearance, transgan-glionic and retrograde transport and sensitivity, Brain Res. 243:215–224.PubMedCrossRefGoogle Scholar
  201. Warr, W. B., de Olmos, J. S., and Heimer, L., 1981, Horseradish peroxidase: The basic procedure, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. RoBards, eds.), Plenum Press, New York, pp. 207–262.CrossRefGoogle Scholar
  202. Weiss, D. G., 1986, The mechanism of axoplasmic transport, in: Axoplasmic Transport (Z. Igbal, ed.), CRC Press, Boca Raton, FL, pp. 275–307.Google Scholar
  203. Weiss, P., and Hiscoe, H. B., 1948, Experiments on the mechanism of nerve growth, J. Exp. Zool 107:315–395.PubMedCrossRefGoogle Scholar
  204. Wenthold, R. J., Skaggs, K. K., and Reale, R. R., 1984, Retrograde axonal transport of antibodies to synaptic membrane components, Brain Res. 304:162–165.PubMedCrossRefGoogle Scholar
  205. Wilczynski, W., and Zakon, H., 1982, Transcellular transfer of HRP in the amphibian visual system, Brain Res. 239:29–40.PubMedCrossRefGoogle Scholar
  206. Wouterlood, F. G., 1988, Anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoag-glutinin combined with immunocytochemistry of gamma-amino butyric acid, choline acetyltransferase or serotonin, Histochemistry 89:421–428.PubMedCrossRefGoogle Scholar
  207. Wouterlood, F. G., Bol. J. G. J. M., and Steinbusch, H. W. M., 1987a, Double-label immunocytochemistry: Combination of anterograde neuroanatomical tracing with Phaseolus vulgaris leucoagglutinin and enzyme histochemistry of target neurons, J. Histochem. Cytochem. 35:817–823.PubMedCrossRefGoogle Scholar
  208. Wouterlood, F. G., Steinbusch, H. W. M., Luiten, P. G. M., and Bol, J. G. J. M., 1987b, Projection from the prefrontal cortex to histaminergic cell groups in the posterior hypothalamic region of the rat. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase, Brain Res. 406:330–336.PubMedCrossRefGoogle Scholar
  209. Záborszky, L., and Cullinan, W. E., 1989, Hypothalamic axons terminate on forebrain cholinergic neurons: An ultrastructural double-labelng study using PHA-L tracing and ChAT immunocytochemistry, Brain Res. 479:177–184.PubMedCrossRefGoogle Scholar
  210. Záborszky, L., and Léránth, C., 1985, Simultaneous ultrastructural demonstration of retro-gradely transported horseradish peroxidase and choline acetyltransferase immunoreactivity, Histochemistry 82:529–537.PubMedCrossRefGoogle Scholar
  211. Záborszky, L., Léránth, C., and Palkovits, M., 1979, Theoretical review: Light and electron microscopic identification of monoaminergic terminals in the central nervous system, Brain Res. Bull. 4:99–117.PubMedCrossRefGoogle Scholar
  212. Záborszky, L., Léránth, C., and Heimer, L., 1984, Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells of the rostral forebrain, Neurosci. Lett. 52:219–225.PubMedCrossRefGoogle Scholar
  213. Záborszky, L., Alheid, G. F., and Heimer, L., 1985, Mapping of transmitter-specific connections: Simultaneous demonstration of anterograde degeneration and changes in the im-munostaining pattern induced by lesions, J. Neurosci. Methods 14:255–266.PubMedCrossRefGoogle Scholar
  214. Záborszky, L., Heimer, L., Eckenstein, F., and Léránth, C., 1986, GABAergic input to cholinergic forebrain neurons: An ultrastructural study using retrograde tracing of HRP and double immunolabeling, J. Comp. Neurol. 250:282–295.PubMedCrossRefGoogle Scholar
  215. Zahm, D. S., 1989, The ventral striatopallidal parts of the basal ganglia in the rat: II. Compart-mentation of ventral pallidal efferents, Neuroscience (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • László Záborszky
    • 1
  • Lennart Heimer
    • 2
  1. 1.Department of OtolaryngologyUniversity of Virginia Medical CenterCharlottesvilleUSA
  2. 2.Departments of Otolaryngology and NeurosurgeryUniversity of Virginia Medical CenterCharlottesvilleUSA

Personalised recommendations