Microdissection in Combination with Biochemical Microassays as a Tool in Tract Tracing

  • Miklós Palkovits

Abstract

During the last 15 years several brain microdissection techniques have been developed (see Cuello and Carson, 1983; Palkovits and Brownstein, 1983, 1988) and applied for a number of purposes, including (1) biochemical mapping for the distribution of various substances (neurotransmitters, hormones, enzymes, receptors, amino acids, etc.) in discrete brain nuclei, (2) measuring the concentrations of above substances in brain nuclei of animals following various treatments, experimental manipulations, or pathological conditions, (3) quantitative measurements to reveal the chemical specificity of neuronal interconnections or interactions between brain regions, (4) measuring the synthesis of various substances in individual brain nuclei following precursor injections into the brain, and (5) sampling of discrete brain nuclei for primary tissue cultures, subcellular analysis (synaptosomes), or for in vitro studies.

Keywords

Brain Area Squirrel Monkey Brain Nucleus Neuronal Interconnection Fresh Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cuello, A. C. (ed.), 1983, Brain Microdissection Techniques, John Wiley & Sons, Chichester.Google Scholar
  2. Cuello, A. C., and Carson S., 1983, Microdissection of fresh rat brain tissue slices, in: Brain Microdissection Techniques (A. C. Cuello, ed.), John Wiley & Sons, Chichester, pp. 37–125.Google Scholar
  3. Davis, R., and Huffman, R. D. 1968, A Stereotaxic Atlas of the Brain of the Baboon (Papio papio), University of Texas Press, Austin, London.Google Scholar
  4. Dua-Sharma, S., Sharma, S., and Jacobs, H. L., 1970, The Canine Brain in Stereotaxic Coordinates, MIT Press, Cambridge, MA.Google Scholar
  5. Emmers, R., and Akert, K., 1963, A Stereotaxic Atlas of the Brain of the Squirrel Monkey (Saimire sciureus), University of Wisconsin Press, Madison, WI.Google Scholar
  6. Gergen, J. A., and MacLean, P. D., 1962, A Stereotaxic Atlas of the Squirrel Monkey’s Brain (Saimire sciureus), University of Wisconsin Press, Madison, WI.Google Scholar
  7. Godfrey, D. A., and Matschinsky, F. M., 1976, Approach to three-dimensional mapping of quantitative histochemical measurements applied to studies of the cochlear nucleus, J. His-tochem. Cytochem. 24:697–712.CrossRefGoogle Scholar
  8. Hellendall, R. P., Godfrey, D. A., Ross, C. D., Armstrong, D. M., and Price, J. L., 1986, The distribution of choline acetyltransferase in the rat amygdaloid complex and adjacent cortical areas, as determined by quantitative microassay and immunohistochemistry, J. Comp. Neurol 249:486–498.PubMedCrossRefGoogle Scholar
  9. Jacobowitz, D. M., 1974, Removal of discrete fresh regions of the rat brain, Brain Res. 90:111–115.CrossRefGoogle Scholar
  10. Kanazawa, I., 1983, Grid microdissection of human brain areas, in: Brain Microdissection Techniques (A. C. Cuello, ed.), John Wiley & Sons, Chichester, pp. 127–153.Google Scholar
  11. Kopin, I. Y., Palkovits, M., Kobayashi, R. M., and Jacobowitz, D. M., 1974, Quantitative relationship of catecholamine content and histofluorescence in brain of rats, Brain Res. 80:229–235.PubMedCrossRefGoogle Scholar
  12. Lim, R. K. S., Lui, C., and Moffitt, R., 1960, A Stereotaxic Atlas of the Dog’s Brain, Charles C. Thomas, Springfield, IL.Google Scholar
  13. Lowry, O. H., Rosebrough, N. Y., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  14. Lucchi, M. R. de, Dennis, B. J., and Adey, W. R., 1965, A Stereotaxic Atlas of the Chimpanzee Brain (Pan satyrus), University of California Press, Berkeley, Los Angeles.Google Scholar
  15. Manocha, S. L., Shantha, T. R., and Bourne, G. H., 1968, A Stereotaxic Atlas of the Brain of the Cebus (Debus apella) Monkey, Oxford University Press, Oxford.Google Scholar
  16. Miyata, Y., and Otsuka, M., 1972, Distribution of γ-aminobutyric acid in cat spinal cord and the alteration produced by local ischemia, J. Neurochem. 19:1833–1834.PubMedCrossRefGoogle Scholar
  17. Monnier, M., and Gangloff, H., 1961, Atlas for Stereotaxic Brain Research on the Conscious Rabbit, Elsevier, Amsterdam.Google Scholar
  18. Oswaldo-Cruz, E., and Rocha-Miranda, C. E., 1968, The Brain of the Opossum (Didelphis marsupi-alis). A Cytoarchitectonic Atlas in Stereotaxic Coordinates, Instituto Biofísica Universidad Federale do Rio de Janeiro, Rio de Janeiro.Google Scholar
  19. Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res. 59:449–450.PubMedCrossRefGoogle Scholar
  20. Palkovits, M., 1980, Guide and Map for the Isolated Removal of Individual Cell Groups from the Rat Brain [Hungarian text], Akadémiai Kiadó, Budapest.Google Scholar
  21. Palkovits, M., and Brownstein, M. J., 1983, Microdissection of brain areas by the punch technique, in: Brain Microdissection Techniques (A. C. Cuello, ed.), John Wiley & Sons, Chichester, pp. 1–36.Google Scholar
  22. Palkovits, M., and Brownstein, M. J., 1988, Maps and Guide to Microdissection of the Rat Brain, Elsevier, New York, Amsterdam.Google Scholar
  23. Paxinos, G., and Watson, C. 1982, The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney, New York.Google Scholar
  24. Peterson, G. L., 1977, A simplification of the protein method of Lowry et al. which is generally more applicable, Anal. Biochem. 83:346–356.PubMedCrossRefGoogle Scholar
  25. Schaltenbrand, G., and Wahren, W., 1977, Atlas for Stereotaxy of the Human Brain, Georg Thieme, Stuttgart.Google Scholar
  26. Scott, P. M., and Knigge, K. M., 1981, Immunocytochemistry of luteinizing hormone-releasing hormone, vasopressin, and corticotropin following deafferentation of the basal hypothalamus of the male rat brain, Cell Tissue Res. 219:393–402.PubMedCrossRefGoogle Scholar
  27. Shantha, T. R., Manocha, S. L., and Bourne, G. H., 1968, A Stereotaxic Atlas of the Jawa Monkey Brains (Macaca irus), Williams & Wilkins, Baltimore.Google Scholar
  28. Sidman, R. L., Angevine, J. B., Jr., and Taber Pierce, E., 1971, Atlas of the Mouse Brain and Spinal Cord, Harvard University Press, Cambridge.Google Scholar
  29. Snider, R. S., and Lee, J. C., 1961, A Stereotaxic Atlas of the Monkey Brain (Macaca mulatto), University of Chicago Press, Chicago.Google Scholar
  30. Snider, R. S., and Niemer, W. T., 1961, A Stereotaxic Atlas of the Cat Brain, University Chicago Press, Chicago.Google Scholar
  31. Verhaart, W. J. C., 1964, A Stereotaxic Atlas of the Brain of the Cat, Van Gorcum, Assen.Google Scholar
  32. Yoshikawa, T., 1968, Atlas of the Brains of Domestic Animals, Pennsylvania State University Press, University Park.Google Scholar
  33. Zaborszky, L., Alheid, G. H., Beinfeld, M. C., Elden, L. E., Heimer, L., and Palkovits, M., 1985, Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunol-ogical study, Neuroscience 14:427–453.PubMedCrossRefGoogle Scholar
  34. Zigmond, R. E., and Ben-Ari, Y., 1976, A simple method for the serial sectioning of fresh brain and the removal of identifiable nuclei from stained sections for biochemical analysis, J. Neurochem. 26:1285–1287.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Miklós Palkovits
    • 1
    • 2
  1. 1.First Department of AnatomySemmelweis University Medical SchoolBudapestHungary
  2. 2.Laboratory of Cell BiologyNational Institute of Mental HealthBethesdaUSA

Personalised recommendations