Skip to main content

(N-3) and (N-6) Fatty Acid Metabolism

  • Chapter
Book cover Dietary ω3 and ω6 Fatty Acids

Abstract

Dietary (n−3) fatty acids mediate physiological processes in at least two different ways. The activities of the liver enzymes that metabolize fatty acids and synthesize triglycerides are modified by the type of fat that is fed. These changes include an elevated rate of fatty acid oxidation along with a reduced rate of fatty acid biosynthesis1,2. The mechanism of action of (n−3) acids at the enzyme level is still a matter of conjecture. Clarke and Armstrong3 have recently reported that rats fed a fish oil diet had reduced levels of mRNA for fatty acid synthetase. These findings suggest that (n−3) fatty acids, or one of their metabolites, regulate enzyme synthesis rather than enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Nestel, S. Wong and D.L. Topping, Dietary long chain polyenoic acids: 1. Suppression of triglyceride formation in rat liver: 2. Attenuation in man of the effects of dietary cholesterol on lipoprotein cholesterol, in: “Health Effects of Polyunsaturated Fatty Acids in Seafoods”, A.P. Simopoulos, R.R. Kifer and R.E. Martin, eds., Academic Press, Orlando, Florida, pp. 211–246 (1986).

    Google Scholar 

  2. P.J. Nestel, D. Topping, J. Marsh, S. Wong, H. Barrett, P. Roach and B. Kambouris, Effects of polyenoic fatty acids (n-3) on lipid and lipoprotein metabolism, in: “Polyunsaturated Fatty Acids and Eicosanoids”, W.E.M. Lands, ed., American Oil Chemists’ Society, Champaign, Illinois, pp. 94–102 (1987).

    Google Scholar 

  3. S.D. Clarke and M.K. Armstrong, Suppression of rat liver fatty acid synthetase mRNA level by dietary fish oil, Federation Proceedings Abstracts, Abstract 3235: 1988.

    Google Scholar 

  4. J.T. Bernert and H. Sprecher, Studies to determine the role rates of chain elongation and desaturation play in regulating the unsaturated fatty acid composition of rat liver lipids, Biochim. Biophys. Acta 398: 354 (1975).

    Article  Google Scholar 

  5. B.O. Christophersen, T-A. Hagve and J. Norseth, Studies on the regulation of arachidonic acid synthesis in isolated liver cells, Biochim. Biophys. Acta 712: 305 (1982).

    Article  CAS  Google Scholar 

  6. T-A. Hagve and B.O. Christophersen, Linolenic acid desaturation and chain elongation and rapid turnover of phospholipid (n-3) fatty acids in isolated rat liver cells, Biochim. Biophys. Acta 753: 339 (1983).

    Article  CAS  Google Scholar 

  7. M.A. Thiede, J. Ozols and P. Strittmatter, Construction and sequence of cDNA for rat liver stearoyl-coenzyme A desaturase, J. Biol. Chem. 261: 13230 (1986).

    PubMed  CAS  Google Scholar 

  8. M.A. Thiede and P. Strittmatter, The induction and characterization of rat liver stearyl-CoA desaturase mRNA, J. Biol. Chem. 260: 14459 (1985).

    PubMed  CAS  Google Scholar 

  9. T.W. Weiner and H. Sprecher, Arachidonic acid, 5,8,11eicosatreinoic acid and 5,8,11,14,17-eicosapentaenoic acid, dietary manipulation of the levels of these acids in rat liver and platelet phospholipids and their incorporation into human platelet phospholipid, Biochim. Biophys. Acta 792: 293 (1984).

    Article  CAS  Google Scholar 

  10. W-H. Kunau and F. Bartnik, Studies on the partial degradation of polyunsaturated fatty acids in rat-liver mitochondria, Eur. J. Biochem. 48: 311 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. C. von Schacky and P.C. Weber, Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acid in humans, J. Clin. Invest. 76: 2446 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. S. Fischer, A. Vischer, V. Preac-Mursil and P.C. Weber, Dietary docosahexaenoic acid is ketroconverted in man to eicosapentaenoic acid, which can be quickly transformed to prostaglandin I3, Prostaglandins 34: 367 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. J.T. Bernert and H. Sprecher, An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids in rat liver microsomes, J. Biol. Chem. 252: 6736 (1977).

    PubMed  CAS  Google Scholar 

  14. M.N. Nagai, L. Cook, R. Prasad and D. Cinti, Do rat hepatic microsomes contain multiple NADPH-supported fatty acid chain elongation pathways or a single pathway? Biochem. Biophys. Res. Commun. 140: 74 (1986).

    Article  Google Scholar 

  15. R. Jeffcoat and A.J. James, The regulation of desaturation and elongation of fatty acids in mammals, in: Fatty Acid Metabolism and its Regulation“, Vol. 7, New Comprehensive Biochemistry, S. Numa, ed., Elsevier, New York, pp. 85–112 (1984).

    Chapter  Google Scholar 

  16. J.D. Lefkowith, V. Flippo, H. Sprecher and P. Needleman, Paradoxical conservation of cardiac and renal arachidonate content in essential fatty acid deficiency, J. Biol. Chem. 260: 15736 (1985).

    PubMed  CAS  Google Scholar 

  17. P. Falardeau, M. Hamberg, and B. Samuelsson, Metabolism of 8,11,14-eicosatrienoic acid in platelets, Biochim. Biophys. Acta 491: 193 (1976).

    Google Scholar 

  18. M. Hamberg and B. Samuelsson, Prostaglandin endoperoxides: Novel transformation of arachidonic acid in human platelets, Proc. Natl. Acad. Sci. USA 71: 3400 (1974).

    Article  PubMed  CAS  Google Scholar 

  19. M. VanRollins, L. Horrocks and H. Sprecher, Metabolism of 7,10,13,16-docosatetraenoic acid to dihomothromboxane, 14-hydroxy-7,10,12-nonadecatrienoic acid and hydroxy acids by human platelets, Biochim. Biophys. Acta 833: 272 (1985).

    Article  CAS  Google Scholar 

  20. M. Milks and H. Sprecher, Metabolism of 4,7,10,13,16docosapentaenoic acid by platelet cyclooxygenase and lipoxygenase, Biochim. Biophys. Acta 835: 29 (1985).

    Article  CAS  Google Scholar 

  21. Sprecher, H., M. VanRollins, F. Sun, A. Wyche, and P. Needleman, Dihomo-prostaglandin and thromboxanes: A novel prostaglandin family from adrenic acid that may specifically be synthesized in the kidney, J. Biol. Chem. 257: 3912 (1982).

    PubMed  CAS  Google Scholar 

  22. W.B. Campbell, J.R. Falck, J.R. Okita, A.R. Johnson and K.S. Callahan, Synthesis of dihomoprostaglandin from adrenic acid (7,10,13,16-docosatetraenoic acid) by human endothelial cells, Biochim. Biophys. Acta 837: 67 (1985).

    Article  CAS  Google Scholar 

  23. M. Hamberg, Transformation of 5,8,11,14,17eicosapentaenoic acid in human platelets, Biochim. Biophys. Acta 618: 389 (1980).

    Article  CAS  Google Scholar 

  24. E.H. Oliw, H. Sprecher and M. Hamberg, Isolation of two novel prostaglandins in human seminal fluid, J. Biol. Chem. 261: 2675 (1986).

    PubMed  CAS  Google Scholar 

  25. M. Hamberg, w-Oxygenation of 6,9,12-octadecatrienoic acid in human platelets, Biochem. Biophys. Res. Commun. 117: 593 (1983).

    Google Scholar 

  26. M.M. Careaga and H. Sprecher, Metabolism of 8,11,14,17eicosatetraenoic acid by human platelet lipoxygenase and cyclooxygenase, Biochim. Biophys. Acta 920: 94 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. M.I. Aveldano and H. Sprecher, Synthesis of hydroxy fatty acids from 4,7,10,13,16,19-[1–14C]docosahexaenoic acid, J. Biol. Chem. 258: 9339 (1983).

    PubMed  CAS  Google Scholar 

  28. M.M. Careaga and H. Sprecher, Synthesis of two hydroxy fatty acids from 7,10,13,16,19-docosapentaenoic acid by human platlets, J. Biol. Chem. 259: 14413 (1984).

    PubMed  CAS  Google Scholar 

  29. Y-K. Wong, P. Westlund, M. Hamberg, E. Granstrom, PH-W. Chao and B. Samuelsson, 15-Lipoxygenase in human platelets, J. Biol. Chem. 260: 9162 (1985).

    PubMed  CAS  Google Scholar 

  30. R.W. Bryant, J.M. Bailey, T. Schewe and S.M. Rappoport, Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid, J. Biol. Chem. 257: 6050 (1982).

    PubMed  CAS  Google Scholar 

  31. F.H. Chilton, J.M. Ellis, S.C. Olson and R.L. Wykle, 1–0-Alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonulcear leukocytes, J. Biol. Chem. 259: 12014 (1984).

    PubMed  CAS  Google Scholar 

  32. F.H. Chilton and R.C. Murphy. Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil, J. Biol. Chem. 261: 7771 (1986).

    PubMed  CAS  Google Scholar 

  33. C.L. Swendsen, F.H. Chilton, J.T. 0/Flaherty, J.R. Surles, C. Piantadosi, M. Waite and R.L. Wykle. Human neutrophils incorporate arachidonic acid and saturated fatty acids into separate molecular species of phospholipids, Biochim. Biophys. Acta919: 79 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sprecher, H. (1989). (N-3) and (N-6) Fatty Acid Metabolism. In: Galli, C., Simopoulos, A.P. (eds) Dietary ω3 and ω6 Fatty Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2043-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2043-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2045-7

  • Online ISBN: 978-1-4757-2043-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics