The Supply of Omega-3 Polyunsaturated Fatty Acids to Photoreceptors and Synapses

  • Nicolas G. Bazan


Omega-3 (or n−3) fatty acids are accumulated in membrane phospholipids primarily as docosahexaenoate (22:6, omega-3). Brain and retina contain by far the highest concentrations of this fatty acid of any tissue. The content of docosahexaenoate is third highest in testes, but its concentration is several fold lower in that tissue than in brain and retina (Salem et al, 1986: Birkle and Bazan, 1986; Bazan and Reddy, 1985).


Polyunsaturated Fatty Acid Docosahexaenoic Acid Retinitis Pigmentosa Outer Segment Photoreceptor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. E., Maude, M. B., Lewis, R. A., Newsome, D. A., and Fishman, G. A., 1987, Abnormal plasma levels of polyunsaturated fatty acid in autosomal dominant retinitis pigmentosa. Exp. Eye Res. 44: 155–159.Google Scholar
  2. Aveldano, M. I., and Bazan, N. G., 1974, Displacement into incubation medium by albumin of highly unsaturated retina free fatty acids arising from membrane lipids. Febs Letters 40: 53–56.PubMedCrossRefGoogle Scholar
  3. Aveldano, M. I., and Bazan, N. G., 1975, Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols. Brain Res. 100: 99–110.Google Scholar
  4. Aveldano, M. I., and Sprecher H., 1983, Synthesis of hydroxy fatty acids from docosahexaenoic acid by human platelets. J. Biol. Chem. 258: 9339–9343.Google Scholar
  5. Aveldano de Caldironi, M. I., and Bazan, N. G., 1977, Acyl groups, molecular species and labeling by iC-glycerol and H-arachidonic acid of vertebrate retina glycerolipids. Adv. Exp. Med. Biol. 83: 397–404.Google Scholar
  6. Aveldano de Caldironi, M. I., Giusto, N. M., and Bazan, N. G., 1981, Polyunsaturated fatty acids of the retina. Progress in Lipid Research 20: 49–57.PubMedCrossRefGoogle Scholar
  7. Bazan, H. E. P., and Bazan, N. G., 1985, Metabolism of docosahexaenoyl groups in phosphatidic acid and in other phospholipids of the retina, in: “Phospholipids in the Nervous System, Vol. 2, Physiological Roles”, L. Horrocks, J. Kanfer, G. Porcellati, eds., Raven Press, New York, pp. 209–217.Google Scholar
  8. Bazan, H. E. P., Careaga, M. M., Sprecher, H., and Bazan, N. G., 1982a, Chain elongation and desaturation of eicosapentaenoate to docosahexaenoate and phospholipid labeling in the rat retina in vivo. Bio-chin. Biophys. Acta 712: 123–128.Google Scholar
  9. Bazan, H. E. P., Ridenour, B., Birkle, D. L., and Bazan, N. G., 1986a, Unique metabolic features of docosahexaenoate metabolism related to functional roles in brain and retina, in: “Phospholipid Research and the Nervous System. Biochemical and Molecular Pharmacology”, L. Horrocks, L. Freysz and G. Toff ano, eds., Liviana Press, pp. 67–78.Google Scholar
  10. Bazan, H. E. P, Sprecher, H., and Bazan, N. G., 1984a, De novo biosynthesis of docosahexaenoyl phosphatidic acid in bovine retinal micro-comes. Biochim. Biophys. Acta 796: 11–19.Google Scholar
  11. Bazan, N. G., 1970, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218: 1–10.Google Scholar
  12. Bazan, N. G., and Birkle, D. L., 1987, Polyunsaturated fatty acids and inositol phospholipids at the synapse in neuronal responsiveness, in: “Molecular Mechanisms of Neuronal Responsiveness”, Y. Erlich et el., eds., Plenum Press, pp. 45–68.Google Scholar
  13. Bazan, N. G., Birkle, D. L., and Reddy, T. S., 1984b, Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem. Biophys. Res. Comm. 125: 741–747.Google Scholar
  14. Bazan, N. G., Birkle, D. L., and Reddy, T. S., 1985, Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degeneration, in: “Retinal Degeneration: Contemporary Experimental and Clinical Studies”, M. M. LaVail, G. Anderson, J. Hollyfield, eds., Alan R. Liss, Inc., New York, pp. 159–187.Google Scholar
  15. Bazan, N. G., di Fazio de Escalante, M. S., Careaga, M. M., Bazan, H. E. P., and Giusto, N. M. 1982b, High content of 22:6 (docosahexaen-oate) and active [2–311]glycerol metabolism of phosphatidic acid from photoreceptor membranes. Biochim. Biophys. Acta 712: 702–706.Google Scholar
  16. Bazan, N. G., and Giusto, N. M., 1980, Docosahexaenoyl chains are introduced in phosphatidic acid during de novo synthesis in retinal microsomes, in: “Control of Membrane Fluidity”, M. Kates and A. Kuksis, eds., Humana Press, New Jersey, pp. 223–236.CrossRefGoogle Scholar
  17. Bazan, N. G., Morelli de Liberti, S. G., Rodriguez de Turco, E. B. and Pediconi, M. F., 1983, Free arachidonic and docosahexaenoic acid accumulation in the central nervous system during stimulation, in: “Neural Membranes”, G. Y. Sun, N. G. Bazan, J. Wu, G. Porcellati and A. Y. Sun, eds., Humana Press, New Jersey, pp. 123–140.CrossRefGoogle Scholar
  18. Bazan, N. G., and Reddy, T. S., 1985, Retina, in: “Handbook of Neurochemistry”, Vol. 8, A. Lajtha, ed., Plenum Press, New York, pp. 505–575.Google Scholar
  19. Bazan, N. G., Reddy, T. S., Bazan, H. E. P., and Birkle, D. L., 1986b, Metabolism of arachidonic and docosahexaenoic acids in the retina. Prog. Lipid Res. 25: 595–606.Google Scholar
  20. Bazan, N. G., Reddy, T. S., Redmond, T. S., Wiggert, B., and Chader, G. J., 1985, Endogenous fatty acids are covalently and non-covalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J. Biol. Chem. 260: 13677–13680.Google Scholar
  21. Bazan, N. G., and Scott, B. L., 1987, Docosahexaenoic acid metabolism and inherited retinal degenerations, in: “Degenerative Retinal Disorders: Clinical and Laboratory Investigations”, J. G. Hollyfield, R. E. Anderson and M. M. Lavail, eds., Alan R. Liss, New York, pp. 103–118.Google Scholar
  22. Bazan, N. G., Scott, B. L., Reddy, T. S., and Pelias, M. Z., 1986c, Decreased content of docosahexaenoate and arachidonate in plasma phospholipids in Usher’s Syndrome. Biochem. Biophys. Res. Comm. 141: 600–604.Google Scholar
  23. Birkle, D. L., and Bazan, N. G., 1986, The arachidonic acid cascade and phospholipid and docosahexaenoic acid metabolism in the retina, in: “Progress in Retinal Research”, Vol 5, N. Osborne, G. Chader, eds., Pergamon Press, London, pp. 309–335.Google Scholar
  24. Blank, J. C., Adinolfi, A. M., and Lolley, R. N., 1974a, Synaptogenesis in the photoreceptor terminal of the mouse retina. J. Comp. Neurol. 156: 81–94.Google Scholar
  25. Blank, J. C., Adinolfi, A. M., and Lolley, R. N., 1974b, Photoreceptor degeneration and synaptogenesis in retinal-degenerative (rd) mice. J. Comp. Neurol. 156: 95–101.Google Scholar
  26. Bok, D., 1985, Retinal photoreceptor-pigment epithelium interactions. Invest. Ophthalmol. Vis. Sci. 26: 1659–1693.Google Scholar
  27. Bourre, J. M., Pascal, G., Duran, G., Masson, M., Dumont, O., Piciotti, M., 1984, Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J. Neurochem. 43: 342.PubMedCrossRefGoogle Scholar
  28. Cai, F., Scott, B. L., and Bazan, N. G., 1988, Delivery of omega-3 fatty acids to developing photoreceptor cells. Invest. Ophthalmol. Vis. Sci. [Suppl] 29: 245.Google Scholar
  29. Converse, C. A., Hammer, H. M., Packard, C. J., and Shepherd, J., 1983, Plasma lipid abnormalities in retinitis pigmentosa and related conditions. Trans. Ophthalmol. Soc. UK 103: 508–512.Google Scholar
  30. Corey, E. J., Shih, C., and Cashman, J. R., 1983, Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. Natl Acad. Sci. USA 80: 3581–3584.Google Scholar
  31. Dobard, G., Scott, B. L., Gebhardt, P. C., Reddy, S. T., and Bazan, N. G., 1987, Synthesis of docosahexaenoic acid in the developing mouse retina. Invest. Ophthalmol. Vis. Sci. [Suppl], 28: 340.Google Scholar
  32. Farber, D. B., and Lolley, R. N., 1974, Cyclic guanosine monophosphate: Elevation in degenerating photoreceptor cells of the C38 mouse retina. Science 186: 449–451.PubMedCrossRefGoogle Scholar
  33. Fesenko, E. E., Kolesnikov, S. S., and Lyubarsky, A. L., 1985, Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313: 310–313.PubMedCrossRefGoogle Scholar
  34. Galli, C., White, H. B. Jr., and Paoletti, R., 1970, Brain lipid modifications induced by essential fatty acid deficiency in growing male and female rats. J. Neurochem. 17: 347–355.PubMedCrossRefGoogle Scholar
  35. Galli, C., Trezciak, H. I., and Paoletti, R., 1971, Effects of dietary fatty acid composition of brain ethanolamine phosphoglyceride: Reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids. Biochim. Biophys. Acta 248: 449.Google Scholar
  36. Giusto, N. M., and Bazan, N. G., 1979, Phosphatidic acid of retinal microsomes contains a high proportion of docosahexaenoate. Biochem. Biophys. Res. Comm. 91: 791–794.Google Scholar
  37. Giusto, N. M., and Bazars, N. G., 1983, Anoxia-induced production of meth- ylated and free fatty acids in retina, cerebral cortex and white matter. Comparison with triglycerides and with other tissues. Neurochem. Pathol. 1: 17–41.Google Scholar
  38. Grun, G., 1982, The development of the vertebrate retina: A comparative study. Adv. Anat. Embryol. Cell. Biol. 78: 7–85.Google Scholar
  39. Lands, W. E. M., Letellier, P. E., Rome, L. H., and Vanderhoek, J. Y., 1973, Inhibition of prostaglandin biosynthesis. Adv. Biosci. 9: 1528.Google Scholar
  40. Lavail, M. M., and Sidman, R. L., 1974, C57BL/6J mice with inherited retinal degeneration. Arch. Ophthalmol. 91: 394–400.Google Scholar
  41. Lee, R. H., Lieberman, B. S., and Lolley, R. N., 1987, A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with beta-and gamma transducin: Purification and subunit structure. Biochemistry 26: 3983–3990.Google Scholar
  42. Lolley, R. N., Lee, R. H., Chase, D. G., and Racz, E., 1986, Rod photoreceptor cells dissociated from mature mice retinas. Invest. Ophthalmol. Vis. Sci. 27: 285–295.Google Scholar
  43. Lolley, R. N., Rayborn, M. E., Hollyfield, J. G., and Farber, D. B., 1980, Cyclic GMP and visual cell degeneration in the inherited disorder of rd mice: A progress report. Vision Res. 20: 1157–1161.Google Scholar
  44. Marcheselli, V. L., Scott, B. L., Racz, E., Lolley, R., and Bazan, N. G., 1988, Early changes in membrane fatty acids of developing photoreceptor cells of rd mice. Invest. Ophthalmol. Vis. Sci. [Suppl] 29: 383.Google Scholar
  45. Neuringer, M., and Connor, W. E., 1986, N-3 fatty acids in the brain and retina: Evidence for their essentiality. Nutrition Rev. 44: 285–294.Google Scholar
  46. Neuringer, M., Connor, W. E., Daigle, D., and Barstad, L., 1988, Electroretinogram abnormalities in young infant rhesus monkeys deprived of omega-3 fatty acids during gestation and postnatal development or only postnatally. Invest. Ophthalmol. Vis. Sci. [Suppl] 29: 145.Google Scholar
  47. Neuringer, M., Connor, W. E., and Luck, S. J., 1985, Suppression of ERG amplitude by repetitive stimulation in rhesus monkeys deficient in retinal docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. [Suppl] 54: 31.Google Scholar
  48. Neuringer, M., Connor, W. E., Van Petten, C., and Barstad, L., 1984, Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73: 272–276.Google Scholar
  49. Reddy, T. S., and Bazan, N. G., 1984, Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in retina. Curr. Eye Res. 3: 1225–1232.Google Scholar
  50. Reddy, T. S., and Bazan, N. G., 1985, Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in synaptic plasma membranes of cerebrum, cerebellum and brain stem of rat brain. J. Neurosci. Res. 13: 381–390.Google Scholar
  51. Reddy, T. S., and Bazan, N. G., 1985b, Synthesis of docosahexaenoyl-, arachidonoyl-and palmitoyl-coenzyme A in ocular tissues. Exp. Eye Res. 41: 87–95.Google Scholar
  52. Reddy, T. S., Sprecher, H., and Bazan, N. G., 1984, Long-chain acyl coenzyme A synthetase from rat brain microsomes: Kinetic studies using [1–14C]docosahexaenoic acid substrate. Eur. J. Biochem. 145: 21–29.Google Scholar
  53. Rhoads, D. E., Kaplan, M. A., Peterson, N. A., and Raghupathy, E., 1982, Effects of free fatty acids on synaptosomal amino acid uptake systems. J. Neurochem. 38: 1255–1260.PubMedCrossRefGoogle Scholar
  54. Salem, N. Jr., Kim, H.-Y., and Yergey, J. A., 1986, Docosahexaenoic acid: Membrane function and metabolism, in: “Health Effects of Polyunsaturated Fatty Acids in Seafoods”, Vol. 15, Academic Press, Inc., London, England, pp. 263–317.Google Scholar
  55. Samue.lsson, B., 1983, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 220: 568–575.Google Scholar
  56. Sanders, T. A. B., Mistry, M., and Naismith, D. J., 1974, The influence of a maternal diet rich in linolenic acid on brain and retinal docosahexaenoic acid in the rat. Br. J. Nutr. 51; 57.Google Scholar
  57. Sanyal, S., and Bal, A. K., 1973, Comparative light and electron microscope study of retinal histogenesis in normal and rd mutant mice. Z. Anat. Entwickl. Gesch. 142: 219–238.Google Scholar
  58. Scott, B. L., and Bazan, N. G., 1988, Developing retinal photoreceptor cells accumulate polyunsaturated fatty acids. Amer. Soc. Neurochem. 79: 108.Google Scholar
  59. Scott, B. L., and Bazan, N. G., 1987b, Docosahexaenoate synthesis in the developing mouse brain. J. Neurochem. [Suppl] 48:S80C.Google Scholar
  60. Scott, B. L., and Bazan, N. G., 1987a, Polyunsaturated fatty acids in retinal development, in: “Polyunsaturated Fatty Acids and Eicosanuids. Proceedings of the American Oil Chemists- Society”, pp. 534–539.Google Scholar
  61. Scott, B. L., Moises, J., and Bazan, N. G., 1987d, Maternal supply of n-3 essential fatty acids to the developing mouse retina. Soc. Neuro-sci. 13: 239.Google Scholar
  62. Scott, B. L., Moises J, Lolley, R. N., and Bazan, N. G., 1987c, Selective accumulation of docosahexaenoic acid (DEA) in dissociated rod photoreceptor cells during mouse postnatal development. Invest. Ophthalmol. Vis. Sci. [Suppl] 28: 340.Google Scholar
  63. Scott, B. L., Racz, E., Lolley, R. N., and Bazan, N. G., 1988, Developing rod photoreceptors from normal and mutant rd mouse retinas: Altered fatty acid composition early in development of the mutant. J. Neuro-sci. Res. 20: 202–211.Google Scholar
  64. Scott, B.L., Reddy, T. S., and Bazan, N. G. 1986, Docosahexaenoate in developing retinas of visual cell mutant mice. Trans. Amer. Soc. Neurochem. 17: 305.Google Scholar
  65. Scott, B. L., Reddy, T. S., and Bazan, N. G., 1987e, Docosahexaenoate metabolism and fatty-acid composition in developing retinas of normal and rd mutant mice. Exp. Eye Res. 44: 101–113.Google Scholar
  66. Sidman, R. L., and Green, M. C., 1965, Retinal degeneration in the mouse: Location of the rd locus in linkage group XVII. J. Eered. 56: 23–29.Google Scholar
  67. Sun, G. Y., and Sun, A.Y., 1974, Synaptosomal plasma membranes: Acyl group composition of phosphoglycerides and (Na+ + K+)-ATPase activity during fatty acid deficiency. J. Neurochem. 22: 15.PubMedCrossRefGoogle Scholar
  68. Tinoco, J., Mijanich, P., and Medwadowski, B., 1977, Depletion of docosahexaenoic acid in retinal lipids of rats fed a linolenic acid-deficient, linoleic acid-containing diet. Biochim. Biophys. Acta 486: 575.Google Scholar
  69. Weber, P. C., Fischer, S., Von Schacky, C., Lorenz, R., and Strasser, T. S., 1986, Dietary omega-3 polyunsaturated fatty acids and eicosanoid formation in man, in: “Health Effects of Polyunsaturated Fatty Acid in Seafoods”, Vol. 3, Academic Press, Inc., London, England, pp. 49–60.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Nicolas G. Bazan
    • 1
    • 2
  1. 1.LSU Eye Center, and Eye, Ear, Nose and Throat HospitalLouisiana State University Medical Center School of MedicineNew OrleansUSA
  2. 2.LSU Eye CenterNew OrleansUSA

Personalised recommendations