Omega-3 Fatty Acids in the Retina

  • Martha Neuringer
  • William E. Connor


The retina and brain contain exceptionallyy high concentrations of docosahexaenoic acid (DHA, or 22:6 omega-3).1–3 This fatty acid is a component of the phospholipids, especially phosphatidylethanolamine and phosphatidylserine, which are basic structural constituents of cell membranes. Particularly rich in DHA are specialized neural membrans, such as those of synaptic endings45 and photoreceptor outer segments.6,7


Total Fatty Acid Outer Segment Photoreceptor Outer Segment Photoreceptor Membrane Oregon Regional Primate Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.E. Anderson. Lipids of ocular tissues. IV. A comparison of the phospholipids from the retina of six mammalian species. Exp. Eye Res. 10: 339–344 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    J.S. O’Brien and E.L. Sampson. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6: 545–551 (1965).PubMedGoogle Scholar
  3. 3.
    L. Svennerholm. Distribution and fatty acid composition of phosphoglycerides in normal human brain. J. Lipid Res. 9: 570–579 (1968).PubMedGoogle Scholar
  4. 4.
    W.C. Breckenridge, I.G. Morgan, J.P. Zanetta, and G. Vincendon. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim. Biophys. Acta 320: 681–686 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    C. Cotman, M.L. Blank, A. Moehl, and F. Snyder. Lipid composition of synaptic plasma membranes isolated from rat brain by zonal ultracentrifugation. Biochemistry 8: 4606–4612 (1969).Google Scholar
  6. 6.
    R.E. Anderson, R.M. Benolken, P.A. Dudley, D.J. Landis, and T.G. Wheeler. Polyunsaturated fatty acids of photoreceptor membranes. Exp. Eye Res. 18: 205–213 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    W.L. Stone, C.C. Farnsworth, and E.A. Dratz. A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Exp. Eye Res. 28: 387–397 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    F.J.M. Daemen. Vertebrate rod outer segment membranes. Biochim. Biophys. Acta 300:255–288 (1973).Google Scholar
  9. 9.
    R.E. Anderson and L. Sperling. Lipids of ocular tissues. VII. Positional distribution of the fatty acids in the phospholipids of bovine retina rod outer segments. Arch. Biochem. Biophys. 144:673–677 (1971).Google Scholar
  10. 10.
    R.D. Wiegand and R.E. Anderson. Phospholipid molecular species of frog rod outer segment membranes. Exp. Eye Res. 37: 159–173 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    R.E. Anderson and L.D. Andrews. Biochemistry of retinal photoreceptor membranes in vertebrates and invertebrates, in: “Visual Cells in Evolution,” J. Westfall, ed., Raven Press, New York (1982).Google Scholar
  12. 12.
    M.I. Aveldano and N.G. Bazan. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 24: 620–627 (1983).PubMedGoogle Scholar
  13. 13.
    N.M. Giusto, M.I. De Boschero, H. Sprecher and M.I. Aveldano. Active labeling of phosphatidylcholines by [1-14C]docosahexaenoate in isolated photoreceptor membranes. Biochim. Biophys. Acta 860:137148 (1986).Google Scholar
  14. 14.
    N.P. Rotstein and M.I. Aveldano. Labeling of lipids of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n-6)), docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim. Biophys. Acta 921:221–234 (1987).Google Scholar
  15. 15.
    J. Tinoco, P. Miljanich and B. Medwadowski. Depletion of docosahexaenoic acid in retinal lipids of rats fed a linolenic acid-deficient, linoleic acid-containing diet. Biochim. Biophys. Acta 486:575–578 (1977).Google Scholar
  16. 16.
    R.D. Wiegand, C.D. Joel, L.M. Rapp, J.C. Nielsen, M.B. Maude and R.E. Anderson. Polyunsaturated fatty acids and vitamin E in rat rod outer segments during light damage. Invest. Ophthalmol. Vis. Sci. 27: 727–733 (1986).Google Scholar
  17. 17.
    R.D. Wiegand, L.M. Rapp and R.E. Anderson. Ferrous ion-induced retinal degeneration: Biochemical changes in photoreceptor membranes. Invest. Ophthalmol. Vis. Sci. 26 (Supp1.3): 65 (1985).Google Scholar
  18. 18.
    R.W. Young. The renewal of photoreceptor cell outer segments. J. Cell Biol. 33: 61–72 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    R.J. Mullen and M.M. LaVail. Inherited retinal dystrophy: Primary defect in pigment epithelium determined with experimental rat chimeras. Science 192: 799–801 (1976).Google Scholar
  20. 20.
    S.J. Fliesler and R.E. Anderson. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22: 79–131 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    M.L. Applebury and P.A. Hargrave. Molecular biology of the visual pigments. Vision Res. 26: 1881–1896 (1986).Google Scholar
  22. 22.
    A.A. Lamola, T. Yamane and A. Zipp. Effects of detergents and high pressures upon the metarhodopsin I to metarhodopsin II equilibrium. Biochemistry 15: 738–745 (1974).Google Scholar
  23. 23.
    R.A. Cone and W.H. Cobbs. Rhodopsin cycle in the living eye of the rat. Nature 221: 820–822 (1969).Google Scholar
  24. 24.
    P.K. Brown. Rhodopsin rotates in the visual receptor membrane. Nature New Biology 236: 35–38 (1972).Google Scholar
  25. 25.
    R.A. Cone. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biology 236: 39–43 (1972).Google Scholar
  26. 26.
    K.P. Coolbear, C.B. Bearde, and K.M.W. Keough. Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed acid phosphatidylcholines. Biochemistry 22: 1466–1473 (1983).Google Scholar
  27. 27.
    E.A. Dratz and A.J. Deese. The role of docosahexaenoic acid (22:6n-3) in biological membranes: Examples from photoreceptors and model membrane bilayers, in: “Health Effects of Polyunsaturated Fatty Acids in Seafoods,” A.P. Simopoulos, ed., Academic Press, New York (1986).Google Scholar
  28. 28.
    T.S. Weidmann, R.D Pates, J.M. Beach, A. Salmon, and M.F. Brown. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 27: 6469–6474 (1988).Google Scholar
  29. 29.
    E.A. Dratz, N. Ryba, A. Watts, and A.J. Deese. Studies of the essential role of docosahexaenoic acid (DHA), 22:6 omega-3, in visual excitation. Invest. Ophthalmol. Vis. Sci. 28 (Supp1.3): 96 (1987).Google Scholar
  30. 30.
    M.R. Paddy and F.W. Dahlquist. Simultaneous observation of order and dynamics at several defined positions in the single acyl chain using 2H NMR of single acyl chain perdeuterated phosphatidylcholines. Biochemistry 24: 5988–5995 (1985).Google Scholar
  31. 31.
    F. Millett, P.A. Hargrave, and M.A. Raftery. Natural abundance 13C nuclear magnetic resonance spectra of the lipid in intact bovine retinal rod outer segment membranes. Biochemistry 12: 3591–3592 (1973).Google Scholar
  32. 32.
    C. Arus, W.M. Westler, M. Barany, and J.L. Markley. Observation of the terminal methyl group in fatty acids of the linolenic series by a new 1H NMR pulse sequence providing spectral editing and solvent suppression. Application to excised frog muscle and rat brain. Biochemistry 25: 3346–3351 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    C.D. Stubbs and A.D. Smith. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779: 87–137 (1984).Google Scholar
  34. 34.
    A.A. Spector and M.A. Yorek. Membrane lipid composition and cellular function. J. Lipid Res. 26: 1015–1035 (1985).PubMedGoogle Scholar
  35. 35.
    J. Bernsohn and F.J. Spitz. Linoleic and linolenic acid dependency of some brain membrane-bound enzymes after lipid deprivation in rats. Biochem. Biophys. Res. Commun. 57: 293–298 (1974).Google Scholar
  36. 36.
    A. Orlacchio, C. Maffei, L. Binaglia, and G. Porcellati. The effect of membrane phospholipid acyl-chain composition on the activity of brain B-N-acetyl-D-glucosaminidase. Biochem. J. 195: 383–388 (1981).Google Scholar
  37. 37.
    R. Tanaka. Comparison of lipid effects on K+-Mg2+ activated pnitrophenyl phosphatase and Na+-K+-Mg2+ activated adenosine triphosphatase of membrane. J. Neurochem. 16: 1301–1307 (1969).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Foot, T.F. Cruz, and M.T. Clandinin. Effect of dietary lipid on synaptosomal acetylcholinesterase activity. Biochem. J. 211: 507–509 (1983).Google Scholar
  39. 39.
    N. Salem, H.-Y. Kim, and J.A. Yergey. Docosahexaenoic acid: Membrane function and metabolism, in: “Health Effects of Polyunsaturated Fatty Acids in Seafoods,” A.P. Simopoulos, ed., Academic Press, New York (1986).Google Scholar
  40. 40.
    V.A. Tyurin and N.V. Gorbunov. Fatty acid composition of aminophospholipids in protein microenvironment of plasmatic synaptic membranes of the brain in rat (in Russian). J. Evol. Biochem. Physiol. 591–594 (1983).Google Scholar
  41. 41.
    A.J. Deese, E.A. Dratz, F.W. Dahlquist, and M.R. Paddy. Interaction of rhodopsin with two unsaturated phosphatidylcholines: A deuterium nuclear magnetic resonance study. Biochemistry 20: 6420–6427 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    M.A. Yorek, R.R. Bohnker, D.T. Dudley, and A.A. Spector. Comparative utilization of n-3 polyunsaturated fatty acids by cultured human Y79 retinoblastoma cells. Biochim. Biophys. Acta 795:277–285, (1984).Google Scholar
  43. 43.
    N.G. Bazan, D.L. Birkle, and T.J. Reddy. Docosahexaenoic acid (22:6n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem. Biophys. Res. Commun. 125: 741–747 (1984).Google Scholar
  44. 44.
    E.L. Berson. Electroretinographic testing as an aid in determining visual prognosis in families with hereditery retinal degenerations, in: “Retina Congress,” R.C. Pruett and C.D.J. Regan, eds., Appleton-Century-Crofts, New York (1974).Google Scholar
  45. 45.
    R.M. Benolken, R.E. Anderson, and T.G. Wheeler. Membrane fatty acids associated with the electrical response in visual excitation. Science 182: 1253–1254 (1973).Google Scholar
  46. 46.
    T.G. Wheeler, R.M. Benolken, and R.E. Anderson. Visual membranes: Specificity of fatty acid precursors for the electrical response to illumination. Science 188: 1312–1314 (1975).Google Scholar
  47. 47.
    A. Nouvelot, E. Dedonder, P. Dewailly, and J.M. Bourre. Influence des n-3 exogenes sur la composition en acides gras polyinsatures de la retine, aspects structural et physiologique. Cah. Nutr. Diet. 20: 123–125 (1985).Google Scholar
  48. 48.
    I. Watanabe, M. Kato, H. Aonuma, A. Hasimoto, Y. Naito, A. Moriuchi, and H. Okuyama. Effect of dietary alpha-linolenate/linoleate balance on the lipid composition and electroretinographic responses in rats. Adv. Biosciences 62: 563–570 (1987).Google Scholar
  49. 49.
    M.A. Lamptey and B.L. Walker. A possible essential role for dietary linolenic acid in the development of the young rat. J. Nutr. 106: 86–93 (1976).PubMedGoogle Scholar
  50. 50.
    N. Yamamoto, M. Saitoh, A. Moriuchi, M. Nomura, and H. Okuyama. Effect of dietary alpha-linoleate/linoleate balance on brain lipid compositions and learning ability of rats. J. Lipid Res. 28: 144–151 (1987).PubMedGoogle Scholar
  51. 51.
    M. Neuringer, W.E. Connor, C. Van Petten, and L. Barstad. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73: 272–276 (1984).PubMedCrossRefGoogle Scholar
  52. 52.
    M. Neuringer, W.E. Connor, D.S. Lin, L. Barstad, and S. Luck. Biochemical and functional effects of prenatal and postnatal omega-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. USA. 83: 4021–4025 (1986).PubMedCrossRefGoogle Scholar
  53. 53.
    W.E. Connor, M. Neuringer, and D. Lin. The incorporation of docosahexaenoic acid into the brain of monkeys deficient in omega-3 essential fatty acids. Clin. Res. 33: 598A (1985).Google Scholar
  54. 54.
    M. Neuringer, W.E. Connor, D. Daigle, and L. Barstad. Electroretinogram abnormalities in young infant rhesus monkeys deprived of omega-3 fatty acids during gestation and postnatal development or only postnatally. Invest. Ophthalmol. Vis. Sci. 29 (Suppl. 3): 145 (1988).Google Scholar
  55. 55.
    B.L. Walker. Maternal diet and brain fatty acids in young rats. Lipids 2: 497–500 (1967).CrossRefGoogle Scholar
  56. 56.
    S.E. Carlson, P.G. Rhodes, and M.G. Ferguson. Docosahexaenoic acid status of preterm infants at birth and following feeding with human milk or formula. Am. J. Clin. Nutr. 44: 798–804 (1986)PubMedGoogle Scholar
  57. 57.
    S.E. Carlson, P.G. Rhodes, V. S. Rao, and D.E. Goldgar. Effect of fish oil supplementation on the n-3 fatty acid content of red blood cell membranes in preterm infants. Pediatr. Res. 21: 507–510 (1987).PubMedCrossRefGoogle Scholar
  58. 58.
    M.A. Crawford, A.G. Hassam, and B.M. Hall. Metabolism of essential fatty acids in the human fetus and neonate. Nutr. Metab. 21: 187188 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Martha Neuringer
    • 1
  • William E. Connor
    • 2
  1. 1.Section of Clinical Nutrition, Department of MedicineOregon Health Sciences UniversityPortlandUSA
  2. 2.Division of NeuroscienceOregon Regional Primate Research CenterBeavertonUSA

Personalised recommendations