Skip to main content

Celiptium Induced Lipid Peroxidation and Toxicity in Rat Renal Cortex

  • Chapter
Book cover Nephrotoxicity

Abstract

The antitumour drug Celiptium (N2-methyl-9-hydroxyellipticinium) is an ellipticine derivative, effective in experimental tumours (1) and in man. Celiptium is metabolized in liver and excreted by the biliary tract (60%) and urine (30%). However, a renal metabolism occurs in both rats and humans treated with Celiptium, cysteine and N-acetylcysteine conjugates appear in the urine (2). Moreover, it was shown that isolated rat kidney cells metabolize Celiptium into the same conjugates which were found in rat or human urines whereas these compounds were not detected in bile (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Paoletti, J.B. Le Pecq, N. Dat Xuong, P. Juret, H. Garnier, J.L. Amiel, J. Rouesse, Antitumor activity, pharmacology and toxicity of ellipticines, ellipticinium and 9-hydroxy-derivatives: preliminary clinical trials of 2-methyl-9-hydroxy-ellipticinium (NSC-264–137). Recent Results Canc. Res., 74:107 (1980)

    Article  CAS  Google Scholar 

  2. B. Monsarrat, M. Maftouh, G. Meunier, B. Dugue, J. Bernadou, J.P. Armand, C. Picard-Fraire, B. Meunier, C. Paoletti, Human and rat urinary metabolites of the hydroxy methylellipticinium. Identification of cysteine conjugates supporting the bioxidative alkylation hypothesis. Biochem. Pharmacol., 32:3887 (1983)

    Article  PubMed  CAS  Google Scholar 

  3. M. Maftouh, Y. Amiar, C. Picard-Fraire. Metabolism of the antitumor drug N2-methyl-9-hydroxyellipticinium acetate in isolated rat kidney cells. Biochem. Pharmacol., 34:427 (1985)

    Article  CAS  Google Scholar 

  4. P. Juret, A. Tanguy, A. Girard. L’ acitate d’ hydroxy-9-mithyl-2-ellipticinium. Etude toxicologique et thirapeutique chaz 100 cancereux. Nouv. Presse Med. 8:1494 (1978)

    Google Scholar 

  5. G. Raguinez-Viotte, C. Dadoun, P. Buchet, T. Ducastelle, J.P. Fillastre. Renal toxicity of the antitumor drug N2-methyl-9-hydroxy-ellipticinium acetate in the Wistar rat. Submitted Arch Toxicology.

    Google Scholar 

  6. O.B. Bayliss-High, Lipids In: Theory and practice of histological techniques, Bancroft, edited by J. D. Stevens, Melbourne-New York. p.217 (1982)

    Google Scholar 

  7. O. H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265 (1951)

    PubMed  CAS  Google Scholar 

  8. E.G. Bligh and W.J. Dyer. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911 (1959)

    Article  PubMed  CAS  Google Scholar 

  9. J.A. Buege and S.D. Aust, Microsomal lipid peroxidation. Methods Enzymol. 52:302 (1978)

    Article  PubMed  CAS  Google Scholar 

  10. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351 (1979)

    Article  PubMed  CAS  Google Scholar 

  11. V.P. Skipski, R.F. Peterson, M. Barclay, Quantitative analysis of phospholipids by thin layer chromatography. Biochem. J. 90:374 (1964)

    PubMed  CAS  Google Scholar 

  12. G.R. Bartlett, Phosphorus assay in column chromatography. J. Biol. Chem. 234:466 (1959)

    PubMed  CAS  Google Scholar 

  13. W.R. Morrison and L.M. Smith, Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron trifluoride-methanol. J. Lipid Res. 5:600 (1964)

    PubMed  CAS  Google Scholar 

  14. A.L. Tappel, Lipid peroxidation damage to cell components. Fed. Proc. 32:1870 (1973)

    PubMed  CAS  Google Scholar 

  15. H. Kappus, Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. In: “Oxidative stress” edited by H. Sies, Academic Press. p. 273 (1985)

    Google Scholar 

  16. C. Auclair, K. Hyland and C. Paoletti. Autooxidation of the antitumor drug 9-hydroxyellipticine and its derivatives. J. Med. Chem. 26:1438 (1983)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raguenez-Viotte, G., Dadoun, C., Van den Bossche, A.M., Fillastre, J.P. (1989). Celiptium Induced Lipid Peroxidation and Toxicity in Rat Renal Cortex. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2040-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2040-2_68

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2042-6

  • Online ISBN: 978-1-4757-2040-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics