Nephrotoxicity pp 705-710 | Cite as

Urine Glutathione-S-Transferase Associated with Nephrotoxic Drugs

  • D. A. Feinfeld
  • R. Safirstein
  • H. Anderson
  • L. Johnson
  • M. Hardy
  • A. Benvenisty
  • V. D’Agati
  • S. D. Levine

Abstract

Administration of a large number of therapeutic and diagnostic agents is associated with injury to the renal tubules. We have studied the appearance of glutathione-S-transferase (GST) in the urine as a marker of renal tubular injury. GST is a cytosolic enzyme found in kidney, liver, and small intestine (1). It binds many substances and catalyses the conjugation of some of its ligands to reduced glutathione (2,3). GST is abundant in cytosol (4) and is localized to the proximal nephron (5). Normally undetectable in urine or serum by enzymatic assay (6), GST appears in the urine in experimental tubular toxicity from substances such as mercury, chromium, and gentamicin (7,8). In this study we looked at urinary GST in rats and man following the administration of cisplatin, cyclosporin, and iodinated radiocontrast agents.

Keywords

Plasma Creatinine Acute Tubular Necrosis Urine Osmolality Nephrotoxic Drug Urinary Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Fleischner, J. Robbins, and I.M. Arias, Immunological studies of Y protein: A major organic anion binding protein in rat liver. J. Clin. Invest. 51:677 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    I.M. Arias, G. Fleischner, R. Kirsch, S. Mishking and Z. Gatmaitan, On the structure, regulation, and function of ligandin, In: “Glutathione: Metabolism and Function,” I.M. Arias and W. Jakoby, eds., Raven Press, New York (1976).Google Scholar
  3. 3.
    W. Habig, M. Pabst, G. Fleischner, Z. Gatmaitan, and I.M. Arias, The identity of glutathione Transferase B and ligandin, the major organic anion binding protein of liver, Proc. Nat. Acad. Sci. 71:3879 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Fleischner, K. Kamisaka, Z. Gatmaitan, and I.M. Arias, Immunologic studies of rat and human ligandin, In: “Glutathione: Metabolism and function,” I.M. Arias and W. Jakoby, eds., Raven Press, New York (1976).Google Scholar
  5. 5.
    L.G. Fine, E.J. Goldstein, and I.M. Arias, Localization of glutathione transferase activity in the rabbit nephron using isolated segments, Kidney. Int. 8:474 (1975).Google Scholar
  6. 6.
    D.A. Feinfeld, G.M. Fleischner, E.J. Goldstein, R.D. Levine, S.D. Levine, M.M. Avram, and I.M. Arias, Ligandinuria: an indication of tubular cell necrosis, Curr. Prob. Clin. Biochem. 9:273 (1979).Google Scholar
  7. 7.
    D.A. Feinfeld, J.J. Bourgoignie, G.M. Fleischner, E.J. Goldstein, L. Biempica, and I.M. Arias, Ligandinuria in nephrotoxic acute tubular necrosis, Kidnev Int. 12:387 (1977).CrossRefGoogle Scholar
  8. 8.
    D.A. Feinfeld, G.M. Fleischner, and I.M. Arias, Urinary ligandin and glutathione-S-transferase in gentamicin-induced nephrotoxicity in the rat, Clin. Sci. 61:123 (1981).PubMedGoogle Scholar
  9. 9.
    D.A. Feinfeld, V.L. Fuh, and R. Safirstein, Urinary glutathione-S-transferase in cisplatin nephrotoxicity in the rat. J. Clin. Chem. Clin. Biochem. 24:529 (1986).PubMedGoogle Scholar
  10. 10.
    D.A. Feinfeld, A. Benvenisty, V. D’Agati, and M. Hardy, Cyclosporin A and urine glutathione-S-transferase. Proc. EDTA-ERA 22:561 (1985).Google Scholar
  11. 11.
    D.A. Feinfeld, R.A. Sherman, R. Safirstein, N. Ohmi, V.L. Fuh, I.M. Arias, and S. D. Levine, Urinary ligandin in renal tubular cell injury, Contr. Nephrol. 42:111 (1984).Google Scholar
  12. 12.
    R.G. Price, Urine N-acetyl-beta-D-glucosaminidase as an indicator of renal disease, Curr. Prob. Clin. Biochem. 9:150 (1979).Google Scholar
  13. 13.
    E. Bomhard, D. Maruhn, D. Paar, and K. Wehling, Urinary enzyme measurements as sensitive indicators of chronic cadmium nephrotoxicity. Contr. Nephrol. 42:142 (1984).Google Scholar
  14. 14.
    J.A.H. Campbell, N.M. Bass, and R.E. Kirsch, Immunohistochemical localization of ligandin in human tissues, Cancer 45:503 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Bomhard, D. Maruhn, and O. Vogel, Comparative investigations on the effects of acute intraperitoneal cadmium, chromium, and mercury exposure on the kidney, Uremia Invest. 9:131 (1985–86).PubMedGoogle Scholar
  16. 16.
    E.J. Goldstein, D.A. Feinfeld, G.M. Fleischner, and M. Elkin, Enzymatic evidence of renal tubular damage following renal angiography. Radiology 121:617 (1976).PubMedGoogle Scholar
  17. 17.
    E.J. Goldstein and I.M. Arias, Interaction of ligandin with radiographic contrast media, Invest. Radiol. 11:594 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • D. A. Feinfeld
    • 1
  • R. Safirstein
    • 1
  • H. Anderson
    • 1
  • L. Johnson
    • 1
  • M. Hardy
    • 1
  • A. Benvenisty
    • 1
  • V. D’Agati
    • 1
  • S. D. Levine
    • 1
  1. 1.Albert Einstein College of Medicine, Mount Sinai School of Medicine, and Columbia University College of Physicians & SurgeonsNew YorkUSA

Personalised recommendations