Role of a G Protein Homolog in Yeast Pheromone Response

  • Janet Kurjan


The recent discovery of a G protein homolog involved in a yeast signal transduction system indicates that G proteins are conserved over a wide evolutionary distance (Dietzel and Kurjan, 1987; Nakafuku et al., 1987; Miyajima et al., 1987; Jahng et al., 1988). The extensive genetic characterization possible in yeast allows a type of approach to the study of G proteins not possible in vertebrate systems. Using such a genetic approach, we isolated theSCG1 gene, which encodes a homolog to the a subunits of G proteins. Genetic results have also provided evidence thatSCG1 is involved in pheromone response in yeast. Recently, putative homologs to the vertebrate ß and γ subunits have also been identified (M. Whiteway, personal communication). In this paper, after presenting background information on pheromone response, I will describe the isolation and characterization ofSCG1 and will discuss our currently favored model of the mechanism of action ofSCG1 in the pheromone response pathway.


Saccharomyces Cerevisiae Carboxy Terminus Disruption Mutation Pheromone Receptor Pheromone Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bender, A., and Sprague, G.F., Jr., 1986, Yeast peptide pheromones, a-factor and α-factor, activate a common response mechanism in their target cells, Cell, 47:929.PubMedCrossRefGoogle Scholar
  2. Betz, R., Duntze, W., and Manney, T.R., 1978, Mating factor-mediated sexual agglutination in Saccharomyces cerevisiae,FEMS Letters, 4:107CrossRefGoogle Scholar
  3. Bray, P., Carter, C., Simons, C., Guo, V., Puckett, C., Kamholz, J., Spiegel, A., and Nirenberg, M. 1986, Human cDNA clones for four species of Gαs signal transduction protein, Proc.Natl.Acad.Sci. USA, 83:8893.PubMedCrossRefGoogle Scholar
  4. Burkholder, A.C., and Hartwell, L.H., 1985, The yeast α-factor receptor: structural properties deduced from the sequence of theSTE2 gene, Nucl.Acids Res., 13:8463.PubMedCrossRefGoogle Scholar
  5. Chan, R.K., and Otte, C.A., 1982a, Physiological characterization ofSaccharomyces cerevisiae mutants supersensitive to G1 arrest bya-factor and α-factor pheromones, Mol.Cell.Biol., 2:21.PubMedGoogle Scholar
  6. Chan, R.K., and Otte, C.A., 1982b, Isolation and genetic analysis ofSaccharomyces cerevisiae mutants supersensitive to G1 arrest bya-factor and a-factor pheromones, Mol.Cell Biol, 2:11.PubMedGoogle Scholar
  7. Chen, Z.Q., Ulsh, L.S., DuBois, G., and Shih, T.Y., 1985, Posttranslational processing of p21ras proteins involves palmitylation of the C-terminal tetrapeptide containing cysteine-186, J. Virol., 56:607.PubMedGoogle Scholar
  8. Clanton, D.J., Hattori, S., and Shih, T.Y., 1986, Mutations of the ras gene product p21 that abolish guanine nucleotide binding, Proc.Natl.Acad.Sci. USA, 83:5076.PubMedCrossRefGoogle Scholar
  9. De Vos, A.M., Tong, L., Milburn, M.V., Matias, P.M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ihtsuka, E., and Kim, S.-H., 1988, Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras-p21, Science, 239:888.PubMedCrossRefGoogle Scholar
  10. Dietzel, C., and Kurjan, J., 1987, The yeastSCG1 gene: a G like protein implicated in the a- and a-factor response pathway, Cell, 50:1001.Google Scholar
  11. Fujiyama, A., and Tamanoi, F., 1986, Processing and fatty acid acylation ofRAS1 andRAS2 proteins in Saccharomyces cerevisiae,Proc.Natl.Acad.Sci. USA, 83:1266.CrossRefGoogle Scholar
  12. Gilman, A.G., 1987, G proteins: transducers of receptor-generated signals, Ann.Rev.Biochem, 56:615.PubMedCrossRefGoogle Scholar
  13. Hagen, D.C., and Sprague, G.F., Jr., 1984, Induction of the yeast α-specificSTE3 gene by the peptide pheromone a-factor, J.Mol.Biol., 178:835.PubMedCrossRefGoogle Scholar
  14. Hagen, D.C., McCaffrey, G., and Sprague, G.F., Jr., 1986, Evidence the yeastSTE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor, Proc.Natl.Acad.Sci. USA, 83:1418.PubMedCrossRefGoogle Scholar
  15. Hartig, A., Holly, J., Saari, G., and MacKay, V.L., 1986, Multiple regulation ofSTE2, a mating-type-specific gene of Saccharomyces cerevisiae,Mol.Cell.Biol., 6:2106.Google Scholar
  16. Hartwell, L.H., 1980, Mutants ofSaccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone, J.Cell Biol., 85:811.PubMedCrossRefGoogle Scholar
  17. Itoh, H., Kozasa, T., Nagata, S., Nakamura, S., Katada, T., Ui, M., Iwai, S., Ohtsuka, E., Kawasaki, H., Suzuki, K., and Kaziro, Y., 1986, Molecular cloning and sequence determination of cDNAs for a subunits of the guanine nucleotide-binding proteins Gs , Gi, and Go from rat brain, Proc.Natl.Acad.Sci. USA, 83:3776.PubMedCrossRefGoogle Scholar
  18. Jahng, K.-Y., Ferguson, J., and Reed, S.I., 1988, Mutations in a gene encoding the a subunit of aSaccharomyces cerevisiae G protein indicate a role in mating pheromone signaling, Mol.Cell.Biol., 8:2484.PubMedGoogle Scholar
  19. Jenness, D.D., Burkholder, A.C., and Hartwell, L.H., 1983, Binding of α-factor pheromone to yeast a cells: chemical and genetic evidence for an a-factor receptor, Cell, 35:521.PubMedCrossRefGoogle Scholar
  20. Jurnak, F., 1985, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science, 230:32.PubMedCrossRefGoogle Scholar
  21. Kurjan, J., 1985, α-Factor structural gene mutations inSaccharomyces cerevisiae: effects on a-factor production and mating, Mol.Cell. Biol., 5:787.PubMedGoogle Scholar
  22. La Cour, T.F.M., Nyborg, J., Thirup, S., and Clark, B.F.C., 1985, Structural details of the binding of guanosine diphosphate to elongation factor Tu from E.coli, as studied by X-ray crystallography, EMBO J., 4:2385.PubMedGoogle Scholar
  23. MacKay, V.L., and Manney, T.R., 1974a, Mutations affecting sexual conjugation and related processes inSaccharomyces cerevisiae. IIsolation and phenotypic characterization of nonmating mutants, Genetics, 76:255.PubMedGoogle Scholar
  24. MacKay, V., and Manney, T.R., 1974b, Mutations affecting sexual conjugation and related processes inSaccharomyces cerevisiae. II. Genetic analysis of nonmating mutants, Genetics, 76:273.PubMedGoogle Scholar
  25. Manney, T., 1983, Expression of theBAR1 gene inSaccharomyces cerevisiae: induction by the a mating pheromone of an activity associated with a secreted protein, J. Bacteriol., 155:291.PubMedGoogle Scholar
  26. Manney, T.R., and Woods, V., 1976, Mutants ofSaccharomyces cerevisiae resistant to the a mating-type factor, Genetics, 82:639.PubMedGoogle Scholar
  27. Masters, S.B., Stroud, R.M., and Bourne, H.R., 1986, Family of G protein a chains: amphipathic analysis and predicted structure of functional domains, Prot.Eng., 1:47.Google Scholar
  28. McGrath, J.P., Capon, D.J., Goedell, D.V., and Levinson, A.D., 1984, Comparative biochemical properties of normal and activated human ras p21 protein, Nature, 310:644.PubMedCrossRefGoogle Scholar
  29. Michaelis, S., and Herskowitz, I., 1988, The a-factor pheromone ofSaccharomyces cerevisiae is essential for mating, Mol.Cell.Biol., 8:1309.PubMedGoogle Scholar
  30. Miyajima, I., Nakafuku, M., Nakayama, N., Brenner, C., Miyajima, A., Kaibuchi, K., Arai, K., Kaziro, Y., and Matsumoto, K., 1987,GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction, Cell, 50:1011.PubMedCrossRefGoogle Scholar
  31. Nakafuku, M., Itoh, H., Nakamura, S., and Kaziro, Y., 1987, Occurrence inSaccharomyces cerevisiae of a gene homologous to the cDNA coding for the a subunit of mammalian G proteins, Proc.Natl.Acad.Sci. USA, 84:2140.PubMedCrossRefGoogle Scholar
  32. Nakayama, N., Miyajima, A., and Arai, K., 1985, Nucleotide sequences ofSTE2 andSTE3, cell type-specific sterile genes from Saccharomyces cerevisiae,EMBO J., 4:2643.Google Scholar
  33. Nakayama, N., Miyajima, A., and Arai, K., 1987, Common signal transduction system shared bySTE2 andSTE3 in haploid cells ofSaccharomyces cerevisiae: autocrine cell-cycle arrest results from forced expression of STE2,EMBO J., 6:249.Google Scholar
  34. Robishaw, J.D., Russell, D.W., Harris, B.A., Smigel, M.D., and Gilman, A.G., 1986. Deduced primary structure of the a subunit of the GTP-binding stimulatory protein of adenylate cyclase, Proc.Natl.Acad.Sci. USA, 83:1251.PubMedCrossRefGoogle Scholar
  35. Rothstein, R.J., 1983, One-step gene disruption in yeast, Meth.Enzym., 101:202.PubMedCrossRefGoogle Scholar
  36. Seeburg, D.H., Colby, W.W., Capon, D.J., Goedell, D.V., and Levinson, A.D., 1984, Biological properties of human c-Ha-ras1 genes mutated at codon 12, Nature, 312:71.PubMedCrossRefGoogle Scholar
  37. Shimoda, C., Yanagishima, N., Sakurai, A., and Tamura, S., 1976, Mating reaction inSaccharomyces cerevisiae. IX. Regulation of sexual cell agglutinability of a-type cells by a sex factor produced by alpha type cells, Arch.Microbiol., 108:27.PubMedCrossRefGoogle Scholar
  38. Sibley, D.R., BenoviC., J.L., Caron, M.G., and Lefkowitz, R. J., 1987, Regulation of transmembrane signaling by receptor phosphorylation, Cell, 48:913.PubMedCrossRefGoogle Scholar
  39. Sibley, D.R., Benovic, J.L., Caron, M.G., and Lefkowitz, R. J., 1987, Regulation of transmembrane signaling by receptor phosphorylation, Cell, 48:913.PubMedCrossRefGoogle Scholar
  40. Strazdis, J.R., and MacKay, V.L., 1983, Induction of yeast mating pheromonea-factor by a cells, Nature, 305:543.PubMedCrossRefGoogle Scholar
  41. Sullivan, K.A., Miller, R.T., Masters, S.B., Biederman, B., Heidman, W., and Bourne, H.R., 1987, Identification of a receptor contact site involved in receptor-G protein coupling, Nature, 330:758.PubMedCrossRefGoogle Scholar
  42. Sweet, R.W., Yokoyama, S., Kamata, T., Feramisco, J.R., Rosenberg, M., and Gross, M., 1984, The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity, Nature, 311:273.PubMedCrossRefGoogle Scholar
  43. Tanabe, T., Nukada, T., Nishikawa, Y., Sugimoto, K., Suzuki, H., Takahashi, H., Noda, M., Haga, T., Ichiyama, A., Kangawa, K., Minamino, N., Matsuo, H., and Numa, S., 1985, Primary structure of the α-subunit of transducin and its relationship to ras proteins, Nature, 315:242.PubMedCrossRefGoogle Scholar
  44. Terrance, K., and Lipke, P.N., 1981, Sexual agglutination inSaccharomyces cerevisiae , J.Bacteriol., 148:889.PubMedGoogle Scholar
  45. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M., 1985, In yeast,RAS proteins are controlling elements of adenylate cyclase, Cell, 40:27.PubMedCrossRefGoogle Scholar
  46. Walter, M., Clark, S.G., and Levinson, A.D., 1986, The oncogenic activation of human p21ras by a novel mechanism ,Science, 233:649.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Janet Kurjan
    • 1
  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations