Three-Dimensional Structure of ras p21 Proteins

  • A. M. de Vos
  • L. Tong
  • M. V. Milburn
  • P. M. Matias
  • S.-H. Kim


ras genes (review in Barbacid, 1987) have been found in a large number of eukaryotic organisms, from Saccharomyces and Drosophila to chicken, rat, and man. Moreover, ras gene products of various species show a very high degree of homology: even between proteins from yeast and man there is approximately 54% identity between corresponding amino acids, and ras proteins from chicken and man differ only in three amino acids. Such evolutionary conservation implies an important cellular function for these proteins, and they have indeed been implicated in playing a crucial role in cell proliferation and terminal differentiation. Based on these observations and on biochemical similarities with G-proteins, it is thought that ras proteins participate as signal transducers at the beginning of the cascade of reactions leading to various essential cellular processes.


GTPase Activity Guanine Base Murine Sarcoma Virus Stanford Synchrotron Radiation Laboratory GTPase Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J., and McCormick, F., 1988, Guanosine triphosphate activating protein (GAP) interacts with the p21 ras effector binding domain, Science, 240:518.PubMedCrossRefGoogle Scholar
  2. Barbacid, M., 1987, ras Genes, Ann. Rev. Biochem., 56:779.PubMedCrossRefGoogle Scholar
  3. Cales, C., Hancock, J. F., Marshall, C. J., and Hall, A., 1988, The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product, Nature, 332:548.PubMedCrossRefGoogle Scholar
  4. Dever, T. E., Glynias, M. J., and Merrick, W. C., 1987, GTP-binding domain: three consensus sequence elements with distinct spacing, Proc. Natl. Acad. Sci. USA, 84:1814.PubMedCrossRefGoogle Scholar
  5. De Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S.-H., 1988, Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21, Science, 239:888.PubMedCrossRefGoogle Scholar
  6. Eccleston, J. F. and Webb, M. R., 1982, Characterization of the GTPase reaction of elongation factor Tu, J. Biol. Chem., 257:5046.PubMedGoogle Scholar
  7. Gibbs, J. B., Sigal, I. S., Poe, M., and Scolnick, E. M., 1984, Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules, Proc. Natl. Acad. Sci. USA, 81:5704.PubMedCrossRefGoogle Scholar
  8. Jancarik, J., De Vos, A. M., Kim, S.-H., Miura, K., Ohtsuka, E., Noguchi, S., and Nishimura, S., 1988, Crystallization of human c-H-ras oncogene products, J. Mol. Biol., 200:205.PubMedCrossRefGoogle Scholar
  9. Jurnak, F., 1985, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science, 230:32.PubMedCrossRefGoogle Scholar
  10. Kim, S.-H., De Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Ohtsuka, E., and Nishimura, S., 1988, ras oncogene proteins: three-dimensional structures, functional implications, and a model for signal transduction, Cold Spring Harbor Symp., in press.Google Scholar
  11. Lacal, J. C., Anderson, P. S., and Aaronson, S. A., 1986, Deletion mutants of Harvey ras p21 protein reveal the absolute requirement of at least two distant regions for GTP-binding and transforming activities, EMBO J., 5:679.PubMedGoogle Scholar
  12. McGrath, J. P., Capon, D. J., Goeddel, D. V., and Levinson, A. D., 1984, Comparative properties of normal and activated human ras p21 protein, Nature, 310:644.PubMedCrossRefGoogle Scholar
  13. La Cour, T. F. M., Nyborg, J., Thirup, S., and Clark, B. F. C., 1985, Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography, EMBO J., 4:2385.PubMedGoogle Scholar
  14. McCormick, F., Clark, B. F. C., La Cour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., and Nyborg, J., 1985, A model for the tertiary structure of p21, the product of the ras oncogene, Science, 230:78.PubMedCrossRefGoogle Scholar
  15. Miura, K., Inoue, Y., Nakamori, H., Iwai, S., Ohtsuka, E., Ikehora, M., Noguchi, S., and Nishimura, S., 1986, Synthesis and expression of a synthetic gene for the activated human c-Ha-ras protein, Jpn. J. Canc. Res. (Gann), 77:45.Google Scholar
  16. Nishimura, S. and Sekiya, T., 1987, Human cancer and cellular oncogenes, Biochem. J., 243:313.PubMedGoogle Scholar
  17. Rao, S. T. and Rossmann, M. G., 1973, Comparison of super-secondary structures in proteins, J. Mol. Biol., 76:241.PubMedCrossRefGoogle Scholar
  18. Reddy, E. P., Reynolds, R. K., Santos, E., and Barbacid, M., 1982, A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene, Nature, 300:149.PubMedCrossRefGoogle Scholar
  19. Scolnick, E. M., Papageorge, A. G., and Shih, T. Y., 1979, Guanine nucleotide-binding activity and an assay for src protein of rat-derived murine sarcoma viruses, Proc. Natl. Acad. Sci. USA, 76:5355.PubMedCrossRefGoogle Scholar
  20. Seeburg, P. H., Colby, W. W., Capon, D. J., Goeddel, D. V., and Levinson, A. D., 1984, Biological properties of human c-Ha-ras1 genes mutated at codon 12, Nature, 312:71.PubMedCrossRefGoogle Scholar
  21. Shih, T. Y., Stokes, P. E., Smythers, G. W., Dhar, D., and Oroszlan, S., 1982, Characterization of the phosphorylation sites and the surrounding amino acid sequences of the p21 transforming proteins coded for by the Harvey and Kirsten strains of murine sarcoma viruses, J. Biol. Chem., 257:11767.PubMedGoogle Scholar
  22. Sigal, I. S., Gibbs, J. B., D’Alonzo, J. S., and Scolnick, E. M., 1986, Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21, Proc. Natl. Acad. Sci. USA, 83:4725.PubMedCrossRefGoogle Scholar
  23. Sweet, R. W., Yokoyama, S., Kamata, T., Feramisco, J. R., Rosenberg, M., and Gross, M., 1984, The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity, Nature, 311:273.PubMedCrossRefGoogle Scholar
  24. Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., Dhar, R., Lowy, D. R., and Chang, E. H., 1982, Mechanism of activation of a human oncogene, Nature, 300:143.PubMedCrossRefGoogle Scholar
  25. Taparowski, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., and Wigier, M., 1982, Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change, Nature, 300:762.CrossRefGoogle Scholar
  26. Tronrud, D. E., Ten Eyck, L. F., and Matthews, B. W., 1987, An efficient general-purpose least-squares program for macromolecular structures, Acta Cryst., A43:489.Google Scholar
  27. Webb, M. R. and Eccleston, J. F., 1981, The stereochemical course of the ribosome-dependent GTPase reaction of elongation factor G from Escherichia coli, J. Biol. Chem., 256:7734.Google Scholar
  28. Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A., and Lowy, D. R., 1984, The p21 ras C-terminus is required for transformation and membrane association, Nature, 310:583.PubMedCrossRefGoogle Scholar
  29. Willumsen, B. M., Papageorge, A., Hubbert, N. L., Bekesi, E., Kung, H.-F., and Lowy, D. R., 1985, Transforming p21 ras protein: flexibility in the major variable region linking the catalytic and membrane-anchoring domains, EMBO J., 4:2893.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. M. de Vos
    • 1
  • L. Tong
    • 1
  • M. V. Milburn
    • 1
  • P. M. Matias
    • 1
  • S.-H. Kim
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations