Skip to main content

Structure and Function of ras p21: Studies BY Site-Directed Mutagenesis

  • Chapter
The Guanine — Nucleotide Binding Proteins

Abstract

Are studies by analogy fruitful to understanding protein structure and function? With protein sequences accumulating at an astonishing rate through gene cloning and DNA sequencing, a great deal of protein structure and function can be learned by analogy with members of the superfamily whose structures have been determined and whose molecular mechanisms of action are known. The best case in point, perhaps is in unraveling the elusive function of ras p21. The molecular model of p21 has been constructed by analogy with the crystal structure of the E. coli elongation factor, EF-Tu (McCormick et al., 1985; Jurnak, 1985). This p21 model is remarkably consistent with the actual three dimensional structure of p21 later determined by X-ray crystallography (De Vos et al., 1988). The recent identification of the GAP protein which stimulates GTPase activity of p21 (Trahey and McCormick, 1987), is a conceptual offspring of similar biochemical mechanism well understood for the function of EF-Tu in protein synthesis (Kaziro, 1978). Furthermore, analogy with the well characterized G-proteins, which regulate transmembrane cell signalling in the adenylate cyclase systems and light transduction in retina, forms the foundation for the current belief that ras p21 mediates transmission of growth signals to their intracellular effectors that control cell proliferation and differentiation (Bourne and Sullivan, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J. and McCormick, F., 1988, Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain, Science, 240:518–521.

    Article  PubMed  CAS  Google Scholar 

  • Barbacid, M., 1987, ras genes, Annu. Rev. Biochem., 56:779–827.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, H. R. and Sullivan, K. S., 1986, Mammalian G proteins: model for ras proteins in transmembrane signalling? Cancer Surveys, 5:257–274.

    PubMed  CAS  Google Scholar 

  • Cales, C., Hancock, J. F., Marshall, C. J. and Hall, A., 1988, The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product, Nature, 332:548–551.

    Article  PubMed  CAS  Google Scholar 

  • Clanton, D. J., Hattori, S. and Shih, T. Y., 1986, Mutations of the ras gene product p21 that abolish guanine nucleotide binding, Proc. Nat. Acad. Sci., USA, 83:5076–5080.

    Article  CAS  Google Scholar 

  • Clanton, D. J., Lu, Y., Blair, D. G. and Shih, T. Y., 1987, Structural significance of the GTP-binding domain of ras p21 studied by site-directed mutagenesis, Mol. Cell. Biol., 7:3092–3097.

    PubMed  CAS  Google Scholar 

  • Dever, T. E., Glynias, M. J. and Merrick, W. C., 1987, GTP-binding domain: three consensus sequence elements with distinct spacing, Proc. Nat. Acad. Sci., USA, 84:1814–1818.

    Article  CAS  Google Scholar 

  • De Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E. and Kim, S. H., 1988, Three-dimensional structure of an oncogenic protein: catalytic domain of human c-H-ras p21, Science, 239:888–893.

    Article  PubMed  Google Scholar 

  • Feig, L. A., Pan, B. T., Roberts, T. M. and Cooper, G. M., 1986, Isolation of ras GTP-binding mutants using an in situ colony-binding assay, Proc. Nat. Acad. Sci., USA, 83:4607–4611.

    Article  CAS  Google Scholar 

  • Gibbs, J. B., Schaber, M. D., Marshall, M. S., Scolnick, E. M. and Sigal, I.S., 1987, Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells, J, Biol1. Chem., 262:10426–10429.

    CAS  Google Scholar 

  • Gibbs, J. B., Sigal, I. S., Poe, M. and Scolnick, E. M., 1984, Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules, Proc. Nat. Acad. Sci., USA, 81:5704–5708.

    Article  CAS  Google Scholar 

  • Hall, A. and Self, A. J., 1986, The effect of Mg2+ on the guanine nucleo tide exchange rate of p2lN-ras, J. Biol. Chem., 261:10963–10965.

    PubMed  CAS  Google Scholar 

  • Halliday, K. R., 1984, Regional homology in GTP-binding proto-oncogene products and elongation factors, J. Cyclic Nucleotide and Protein Phosphorylation Research, 9:435–448.

    CAS  Google Scholar 

  • Hattori, S., Ulsh, L. S., Halliday, K. and Shih, T. Y., 1985, Biochemical properties of a highly purified v-ras H p21 protein overproduced in E. coli and inhibition of its activities by a monoclonal antibody, Mol. Cell. Biol., 5:1449–1455.

    PubMed  CAS  Google Scholar 

  • Hattori, S., Yamashita, T., Copeland, T. D., Oroszlan, S. and Shih, T. Y., 1986, Reactivity of a sulfhydryl group of the ras oncogene product p21 modulated by GTP binding, J. Biol. Chem., 751: 14582–14586.

    Google Scholar 

  • Hoshino, M., Clanton, D. J., Shih, T. Y., Kawakita, M. and Hattori, S., 1987, Interaction of ras oncogene product p21 with guanine nucleo tides, J. Biochem. (Tokyo), 102:503–511.

    CAS  Google Scholar 

  • Jurnak, F., 1985, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science, 230: 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Kaziro, Y., 1978, The role of guanosine 5’-triphosphate in polypeptide chain elongation, Biochim. Biophys. Acta, 505:95–127.

    Article  PubMed  CAS  Google Scholar 

  • Lautenberger, J. A., Ulsh, L., Shih, T. Y. and Papas, T. S., 1983, High level expression in E. coli of enzymatically active Harvey murine sarcoma virus p21 ras protein, Science, 221:858–860.

    Article  PubMed  CAS  Google Scholar 

  • Leberman, R. and Egner, U., 1984, Homologies in the primary structure of GTP-binding proteins: the nucleotide-binding site of EF-Tu and p21, The EMBO J., 3:339–341.

    CAS  Google Scholar 

  • Manne, V., Bekesi, E. and Kung, H. F., 1985, Ha-ras proteins exhibit GTPase activity: point mutations that activate Ha-ras products result in decreased GTPase activity, Proc. Nat. Acad. Sci., USA, 82:376–380.

    Article  CAS  Google Scholar 

  • McCormick, F., Clark, B. F., La Cour, T. F. M., Kjeldgaard, M., Norskov- Lauritsen, L. and Nyborg, J., 1985, A model for the tertiary struc ture of p21, the product of the ras oncogene, Science, 230: 78–82.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, J. P., Capon, D. V., Goeddel, D. V. and Levinson, A. D., 1984, Comparative biochemical properties of normal and activated human ras p21 proteins, Nature, 310:644–649.

    Article  PubMed  CAS  Google Scholar 

  • Moeller, W. and Amons, R., 1985, Phosphate-binding sequences in nucleotide- binding proteins, FEBS Letters, 186:1–7.

    Article  CAS  Google Scholar 

  • Rubin, J. R., Morikawa, K., Nyborg, J., La Cour, T. F. M., Clark, B. F. C. and Miller, D. L., 1981, Structural features of the GDP binding site of elongation factor Tu from E. coli as determined by X-ray diffrac tion, FEBS Letters, 129:177–179.

    Article  PubMed  CAS  Google Scholar 

  • Saikumar, P., Ulsh, L. S., Clanton, D. J., Huang, K. P. and Shih, T. Y., 1988, Novel phosphorylation of c-ras p21 by protein kinases, Oncogene Research, in press.

    Google Scholar 

  • Satoh, T., Nakamura, S. and Kaziro, Y., 1987, Induction of neurite formation in PC12 cells by microinjection of proto-oncogenic Ha-ras protein preincubated with guanosine-5’-0-(3-thiotriphosphate), Mol. Cell.Biol., 7:4553–4556.

    PubMed  CAS  Google Scholar 

  • Scolnick, E. M., Papageorge, A. and Shih, T. Y., 1979, Guanine nucleotide- binding activity as an assay for sre protein of rat-derived murine sarcoma viruses, Proc. Nat. Acad. Sci., USA, 76:5355–5359.

    Article  CAS  Google Scholar 

  • Shih, T. Y., Papageorge, A. G., Stokes, P. E., Weeks, M. O. and Scolnick, E. M., 1980, Guanine nucleotide-binding and autophosphorylating activities associated with the p21src protein of Harvey murine sarcoma virus, Nature, 287:686–691.

    Article  PubMed  CAS  Google Scholar 

  • Shih, T. Y., Weeks, M. O., Young, H. A. and Scolnick, E. M., 1979a, Identification of a sarcoma virus coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus. Virology, 96:64–79.

    Article  PubMed  CAS  Google Scholar 

  • Shih, T. Y., Weeks, M. O., Young, H. A. and Scolnick, E. M., 1979b, p21 of Kirsten murine sarcoma virus is thermolabile in a viral mutant temperature-sensitive for the maintenance of transformation, J. Virol., 31:546–556.

    PubMed  CAS  Google Scholar 

  • Sigal, I. S., 1988, A structure and some function, Nature, 332:485–486.

    Article  PubMed  CAS  Google Scholar 

  • Sigal, I. S., Gibbs, J. B., D’Alonzo, J. S., Temeles, G. L., Wolanski, B. S., Socher, S. and Scolnick, E. S., 1986, Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects, Proc. Nat. Acad. Sci., USA, 83:952–956.

    Article  CAS  Google Scholar 

  • Sweet, R. W., Yokoyama, S., Kamata, T., Feramisco, J. R., Rosenberg, M. and Gross, M., 1984, The product of ras is a GTPase and T24 oncogenic mutant is deficient in this activity, Nature, 311:273–275.

    Article  PubMed  CAS  Google Scholar 

  • Trahey, M. and McCormick, F., 1987, A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants, Science, 238:542–545.

    Article  PubMed  CAS  Google Scholar 

  • Walter, M., Clark, S. G. and Levinson, A. D., 1986, The oncogenic activation of human p2iras by a novel mechanism, Science, 233:649–652.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shih, T.Y., Clanton, D.J., Saikumar, P., Ulsh, L.S., Hattori, S. (1989). Structure and Function of ras p21: Studies BY Site-Directed Mutagenesis. In: Bosch, L., Kraal, B., Parmeggiani, A. (eds) The Guanine — Nucleotide Binding Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2037-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2037-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2039-6

  • Online ISBN: 978-1-4757-2037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics