Structural And Functional Studies on c-P21, v-P21 and the Genetically Engineered Guanine Nucleotide Binding Domain of EF-Tu

  • Alfred Pingoud
  • Uwe Pieper
  • Roger Busche
  • Hans-Jürgen Ehbrecht
  • Matthias Wehrmann
  • Frank-Ulrich Gast
  • Jürgen Feuerstein
  • Alfred Wittinghofer
  • Thomas Jarchau
  • Gert-Wieland Kohring
  • Frank Mayer

Abstract

Guanine nucleotides are intimately involved in a variety of regulatory functions, in particular in protein synthesis (1) and signal transduction (2, 3). Common to these functions is that activation of the target proteins occurs by binding of GTP, while deactivation is achieved by GTP hydrolysis. Following GDP dissociation from the guanine nucleotide binding protein reactivation is initiated by GTP binding. Interference with this cycle of events leads to a major disturbance of the metabolic reactions involved.

Keywords

Circular Dichroism Spectrum Adenylate Kinase Domain Pair Guanine Nucleotide Binding Protein Anthracycline Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Kaziro, Y. (1978) Biochim. Biophys. Acta 505, 95–127PubMedCrossRefGoogle Scholar
  2. (2).
    Stryer, L. & Bourne, H.R. (1986) Annu. Rev. CeU Biol. 2, 391–420CrossRefGoogle Scholar
  3. (3).
    Gilman, A.G. (1987) Annu. Rev. Biochem. 56, 615–649PubMedCrossRefGoogle Scholar
  4. (4).
    Bosch, L., Kraal, B., van der Meide, P.H., Duisterwinkel, F.J. & van Noort, J.M. (1983) Progr. Nucl. Acid Res. Mol. Biol. 30, 91–126CrossRefGoogle Scholar
  5. (5).
    Parmeggiani, A. & Swart, G.W.M. (1985) Annu. Rev. Microbiol. 39, 557–577PubMedCrossRefGoogle Scholar
  6. (6).
    Barbacid, M. (1987) Annu. Rev. Biochem. 56, 779–827PubMedCrossRefGoogle Scholar
  7. (7).
    Halliday, K. (1984) J. Cyclic Nucleotide Protein Phosphorylation Res. 9, 435–448Google Scholar
  8. (8).
    Leberman, R. & Egner, U. (1984) EMBO J. 3, 339–341PubMedGoogle Scholar
  9. (9).
    Dever, T.E., Glynias, MJ. & Merrick, W.C. (1987) Proc. Natl. Acad. Sci. USA 84, 1814, 1818CrossRefGoogle Scholar
  10. (10).
    Clark, R., Wong, G., Arnheim, N., Nitecki, D. & McCormick, F. (1985) Proc. Natl. Acad. Sci. USA 82, 5280–5284PubMedCrossRefGoogle Scholar
  11. (11).
    Lacal, J.C. & Aaronson, S.A. (1986) Proc. Natl. Acad. Sci. USA 83, 5400–5404PubMedCrossRefGoogle Scholar
  12. (12).
    Wolf, H., Chinali, G. & Parmeggiani, A. (1974) Proc. Natl. Acad. Sci. USA 71, 4910–4914PubMedCrossRefGoogle Scholar
  13. (13).
    March, P.E. & Inouye, M. (1985) Proc. Natl. Acad. Sci. USA 82, 7500–7504PubMedCrossRefGoogle Scholar
  14. (14).
    Kohring, G.-W., Mayer, F. & Mayer, H. (1985) Eur. J. CeU Biol. 37, 1–6Google Scholar
  15. (15).
    Gerlach, J.H., Endicott, J.A., Juranka, P.F., Henderson, G., Sarangi, F., Deuchars, K.L. & Ling, V. (1986) Nature 324, 485–489PubMedCrossRefGoogle Scholar
  16. (16).
    Israel, M., Idriss, J.M., Koseki, Y. & Khetarpal, V.K. (1987) Cancers Chemother. Pharmacol. 20, 277–284Google Scholar
  17. (17).
    Parmeggiani, A., Swart, G.W.M., Mortensen, K.K., Jensen, M., Clark, B.F.C., Dente, L. & Cortese, R. (1987) Proc. Natl. Acad. Sci. USA 84, 3141–3145PubMedCrossRefGoogle Scholar
  18. (18).
    Pingoud, A., Urbanke, C., Krauss, G., Peters, F. & Maass, G. (1977) Eur. J. Biochem. 78, 403–409PubMedCrossRefGoogle Scholar
  19. (19).
    Duisterwinkel, F.J., de Graaf, J.M., Kraal, B. & Bosch, L. (1981) FEBS Lett. 131, 89–93PubMedCrossRefGoogle Scholar
  20. (20).
    Duisterwinkel, F.J., Kraal, B., de Graaf, J.M., Talens, A., Bosch, L., Swart, G.W.M., Par-meggiani, A., LaCour, T.F.M., Nyborg, J. & Clark, B.F.C. (1984), EMBO J. 3, 113–120PubMedGoogle Scholar
  21. (21).
    van Noort, J.M., Kraal, B. & Bosch, L. (1985) Proc. Natl. Acad. Sci. USA 82, 3212–3216PubMedCrossRefGoogle Scholar
  22. (22).
    Chen, Y.-H., Yang, J.T. & Chau, K.H. (1974) Biochemistry 13, 3350–3361PubMedCrossRefGoogle Scholar
  23. (23).
    LaCour, T.F.M., Nyborg, J., Thirup, S. & Clark, B.F.C. (1985) EMBO J. 4, 2385–2388Google Scholar
  24. (24).
    Jurnak, F. (1985) Science 230, 32–36PubMedCrossRefGoogle Scholar
  25. (25).
    de Vos, A.M., Tong, L., Milburn, M.V., Matias, P.M., Jancarik, J., Noguchi, S., Nishimu-ra, S., Miura, K., Ohtsuka, E. & Kim, S.-H. (1988), Science 239, 888–893PubMedCrossRefGoogle Scholar
  26. (26).
    Pingoud, A., Wehrmann, M., Pieper, U., Gast, F.-U., Urbanke, C, Alves, J., Feuerstein, J. & Wittinghofer, A. (1988) Biochemistry 27, 4735–4740PubMedCrossRefGoogle Scholar
  27. (27).
    Tucker, J., Szakiel, G., Feuerstein, J., John, J., Goody, R. & Wittinghofer, A. (1986) EMBOJ. 5, 1351–1358Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Alfred Pingoud
    • 1
  • Uwe Pieper
    • 1
  • Roger Busche
    • 1
  • Hans-Jürgen Ehbrecht
    • 1
  • Matthias Wehrmann
    • 1
  • Frank-Ulrich Gast
    • 2
  • Jürgen Feuerstein
    • 2
  • Alfred Wittinghofer
    • 2
  • Thomas Jarchau
    • 3
  • Gert-Wieland Kohring
    • 4
  • Frank Mayer
    • 4
  1. 1.Zentrum BiochemieMedizinische Hochschule HannoverHannoverW.-Germany
  2. 2.Abteilung Biophysik, Max-Planck-Institut für Medizinische ForschungHeidelbergGermany
  3. 3.Institut für MikrobiologieUniversität WürzburgWürzburgGermany
  4. 4.Institut für MikrobiologieUniversität GöttingenGöttingenGermany

Personalised recommendations