Progress on the Three-Dimensional Structural Determination of Trypsin-Modified EF-TU-GDP

  • Frances Jurnak
  • Michelle Nelson
  • Marilyn Yoder
  • Susan Heffron
  • Suet Miu


Elongation factor (EF-)Tu is a cytoplasmic protein whose primary function is to recognize and transport aminoacyl tRNAs to the ribosome during protein synthesis (for review, see 1,2). In order to carry out its function, EF-Tu binds to different ligands, including GDP, GTP, EF-Ts, aminoacyl-tRNA and ribosomal proteins, during each elongation cycle. Biochemical studies have indicated that EF-Tu undergoes a series of discrete conformational changes as the protein changes ligands. The long-term objective of the crystallographic studies is to determine the atomic details of the conformational changes during the elongation cycle by X-ray diffraction techniques.


Beta Strand Elongation Cycle Ribose Ring Invariant Amino Acid Carboxy Terminal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Miller, D. L., and H. Weissbach, Factors involved in the transfer of aminoacyl-tRNA to the ribosome, in: “Molecular Mechanisms of Protein Biosynthesis,” S. Pestka and H. Weissbach, eds., Academic Press, New York (1977).Google Scholar
  2. 2.
    Kaziro, Y., The role of guanosine 5′-triphosphate in polypeptide chain elongation, Biochim. Biophys. Acta505, 95–127 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    F. Jurnak, A. McPherson, A. Wang, and A. Rich, Biochemical and structural studies of the tetragonal crystalline modification of the Escherichia coli elongation factor, Tu, J. Biol. Chem. 255:6751–6757 (1980).PubMedGoogle Scholar
  4. 4.
    E. Masuda, A. Louie, F. and Jurnak, Effect of trypsin modifications of elongation factor, Tu, on the equilibrium between Tu-GTP and aminoacyl-tRNA, J. Biol. Chem. 260:8702–8705 (1985).PubMedGoogle Scholar
  5. 5.
    F. Jurnak, D. L. Miller, and A. Rich, Preliminary X-ray diffraction data for tetragonal crystals of trypsinized E. coli elongation factor, J. Mol. Biol. 115:103–110 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Sneden, D. L. Miller, S. H. Kim, and A. Rich, Preliminary X-ray analysis of the crystalline complex between polypeptide chain elongation factor, Tu, and GDP, Nature (London) 241:530 (1973).CrossRefGoogle Scholar
  7. 7.
    W. H. Gast, W. Kabsch, A. Wittinghofer, and R. Leberman, Crystals of a large tryptic peptide (fragment A) of elongation factor EF-Tu from Escherichia coli, FEBS Letters 74:88–90 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    Jurnak, F., Induction of elongation factor Tu-GDP crystal polymorphism by polyethylene glycol contaminants, J. Mol. Biol. 185:215–217 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    B. C. Wang, Resolution of phase ambiguity in macromolecular crystallography, in: “Methods in Enzymology,” H.W. Wyckoff, C.H.W. Hirs, and S.N. Timasheff, eds., Academic Press, New York (1985).Google Scholar
  10. 10.
    F. A. Jurnak, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science 230:32–36 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    P.J. Bjorkman, M. A. Saper, B. Samraoui, W. S. Bennett, J.L. Strominger, and D.C. Wiley, Structure of the human class I histocompatibility antigen, HLA-A2, Nature 329:506–512 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    A. M. de Vos, personal communication.Google Scholar
  13. 13.
    Kabsch, W., Gast, W. N., Schulz, G. E. and Leberman, R., Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-Tu, from Escherichia coli, J. Mol. Biol. 117:999–1012 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    B. F. C. Clark, T. F. M. LaCour, J. Fontecilla-Camps, K. Morikawa, K. M. Nielsen, J. Nyborg, and J. R. Rubin, 1982, Three-dimensional structural elements of bacterial elongation factor Tu complexed to GDP, in: “Cell Function and Differentiation,” Part C, Alan R. Liss, Inc., New York.Google Scholar
  15. 15.
    L. K. Duffy, L. Gerber, A. E. Johnson and D. L. Miller, Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu, Biochemistry 20:4663–4666 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Jonik, J. Smrt, A. Holij, and I. Ryclik, Interaction of Escherichia coli EF-Tu-GTP and EF-Tu-GDP with analogues of 3′ terminus of aminoacyl-tRNA, Eur. J. Biochem. 105:315–320 (1978).CrossRefGoogle Scholar
  17. 17.
    J. M. Van Noort, B. Kraal, T. F. M. LaCour, J. Nyborg, and B. F. C. Clark, Cross-linking of tRNA at two different sites of the elongation factor, Tu, Proc. Natl. Acad. Sci. USA 81:3969–3972 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Leberman, and U. Egner, Homologies in the primary structure of GTP-binding proteins: The nucleotide-binding site of EF-Tu and p21. The EMBO Journal 3:339 (1984).PubMedGoogle Scholar
  19. 19.
    K. Halliday, Regional homology in GTP-binding proto-oncogene products and elongation factors, J. Cyclic Nucleotide Prot. Phosphoryl. Res. 9:435 (1984).Google Scholar
  20. 20.
    T. E. Dever, M. J. Glynias, and W. C. Merrick, GTP-binding domain: Three consensus sequence elements with distinct spacing, Proc. Natl. Acad. Sci. USA, 84:1814–1818 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    F. McCormick, B. F. C. Clark, T. F. M. la Cour, M. Kjeldgaard, L. Norskov-Lauritsen, and J. Nyborg, A model for the tertiary structure of p21, the product of the ras oncogene. Science 230:78–82 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    I. S. Sigal, G. M. Smith, F. Jurnak, J. D. Marsico-Ahern, J. S. D’allonzo, E. M. Scolnick, and J. B. Gibbs, Molecular approaches towards an anti-ras drug, Anti-Cancer Drug Design 2:107–115 (1987).PubMedGoogle Scholar
  23. 23.
    A.M. de Vos, L. Tong, M. V. Milburn, P. M. Matias, J. Jancarik, S. Noguchi, S. Nishimura, K. Miura, E. Ohtsuka, and S-H. Kim, Three-dimensional structure of an oncogene protein: Catalytic domain of human C-H-ras p21, Science 239:888–893 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    F. Jurnak, The three-dimensional structure of C-H-ras p21: Implications for oncogene and G protein studies, Trends in Biochem. Sci. 13:195–198 (1988).CrossRefGoogle Scholar
  25. 25.
    F. Jurnak and A. McPherson, eds., “Biological Macromolecules and Assemblies: Virus Structures,” Vol. 1, John Wiley &Sons, New York (1984).Google Scholar
  26. 26.
    A. Parmeggiani, G. W. M. Swart, K. K. Mortensen, M. Jensen, B. F. C. Clark, L. Dente, and R. Cortese, Properties of a genetically engineered G domain of elongation factor Tu, Proc. Natl. Acad. Sci. USA 84:3141–3145 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    K. H. Nierhau, and H. G. Wittman, Ribosomal function and its inhibition by antibiotics in procaryotes, Naturwissenschaften 67:234–250 (1980).CrossRefGoogle Scholar
  28. 28.
    G. Suarez and D. Nathans, Inhibition of aminoacyl-tRNA binding to ribosomes by tetracycline, Biochem. Biophys. Res. Commun. 18:743–750 (1965).CrossRefGoogle Scholar
  29. 29.
    T. Tritton, Ribosome-tetracycline interactions, Biochemistry 16:4133–4138 (1977)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Frances Jurnak
    • 1
  • Michelle Nelson
    • 1
  • Marilyn Yoder
    • 1
  • Susan Heffron
    • 1
  • Suet Miu
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations