Skip to main content

Progress on the Three-Dimensional Structural Determination of Trypsin-Modified EF-TU-GDP

  • Chapter
The Guanine — Nucleotide Binding Proteins

Abstract

Elongation factor (EF-)Tu is a cytoplasmic protein whose primary function is to recognize and transport aminoacyl tRNAs to the ribosome during protein synthesis (for review, see 1,2). In order to carry out its function, EF-Tu binds to different ligands, including GDP, GTP, EF-Ts, aminoacyl-tRNA and ribosomal proteins, during each elongation cycle. Biochemical studies have indicated that EF-Tu undergoes a series of discrete conformational changes as the protein changes ligands. The long-term objective of the crystallographic studies is to determine the atomic details of the conformational changes during the elongation cycle by X-ray diffraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. L. Miller, D. L., and H. Weissbach, Factors involved in the transfer of aminoacyl-tRNA to the ribosome, in: “Molecular Mechanisms of Protein Biosynthesis,” S. Pestka and H. Weissbach, eds., Academic Press, New York (1977).

    Google Scholar 

  2. Kaziro, Y., The role of guanosine 5′-triphosphate in polypeptide chain elongation, Biochim. Biophys. Acta505, 95–127 (1978).

    Article  PubMed  CAS  Google Scholar 

  3. F. Jurnak, A. McPherson, A. Wang, and A. Rich, Biochemical and structural studies of the tetragonal crystalline modification of the Escherichia coli elongation factor, Tu, J. Biol. Chem. 255:6751–6757 (1980).

    PubMed  CAS  Google Scholar 

  4. E. Masuda, A. Louie, F. and Jurnak, Effect of trypsin modifications of elongation factor, Tu, on the equilibrium between Tu-GTP and aminoacyl-tRNA, J. Biol. Chem. 260:8702–8705 (1985).

    PubMed  CAS  Google Scholar 

  5. F. Jurnak, D. L. Miller, and A. Rich, Preliminary X-ray diffraction data for tetragonal crystals of trypsinized E. coli elongation factor, J. Mol. Biol. 115:103–110 (1977).

    Article  PubMed  CAS  Google Scholar 

  6. D. Sneden, D. L. Miller, S. H. Kim, and A. Rich, Preliminary X-ray analysis of the crystalline complex between polypeptide chain elongation factor, Tu, and GDP, Nature (London) 241:530 (1973).

    Article  CAS  Google Scholar 

  7. W. H. Gast, W. Kabsch, A. Wittinghofer, and R. Leberman, Crystals of a large tryptic peptide (fragment A) of elongation factor EF-Tu from Escherichia coli, FEBS Letters 74:88–90 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. Jurnak, F., Induction of elongation factor Tu-GDP crystal polymorphism by polyethylene glycol contaminants, J. Mol. Biol. 185:215–217 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. B. C. Wang, Resolution of phase ambiguity in macromolecular crystallography, in: “Methods in Enzymology,” H.W. Wyckoff, C.H.W. Hirs, and S.N. Timasheff, eds., Academic Press, New York (1985).

    Google Scholar 

  10. F. A. Jurnak, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science 230:32–36 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. P.J. Bjorkman, M. A. Saper, B. Samraoui, W. S. Bennett, J.L. Strominger, and D.C. Wiley, Structure of the human class I histocompatibility antigen, HLA-A2, Nature 329:506–512 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. A. M. de Vos, personal communication.

    Google Scholar 

  13. Kabsch, W., Gast, W. N., Schulz, G. E. and Leberman, R., Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-Tu, from Escherichia coli, J. Mol. Biol. 117:999–1012 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. B. F. C. Clark, T. F. M. LaCour, J. Fontecilla-Camps, K. Morikawa, K. M. Nielsen, J. Nyborg, and J. R. Rubin, 1982, Three-dimensional structural elements of bacterial elongation factor Tu complexed to GDP, in: “Cell Function and Differentiation,” Part C, Alan R. Liss, Inc., New York.

    Google Scholar 

  15. L. K. Duffy, L. Gerber, A. E. Johnson and D. L. Miller, Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu, Biochemistry 20:4663–4666 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. J. Jonik, J. Smrt, A. Holij, and I. Ryclik, Interaction of Escherichia coli EF-Tu-GTP and EF-Tu-GDP with analogues of 3′ terminus of aminoacyl-tRNA, Eur. J. Biochem. 105:315–320 (1978).

    Article  Google Scholar 

  17. J. M. Van Noort, B. Kraal, T. F. M. LaCour, J. Nyborg, and B. F. C. Clark, Cross-linking of tRNA at two different sites of the elongation factor, Tu, Proc. Natl. Acad. Sci. USA 81:3969–3972 (1984).

    Article  PubMed  Google Scholar 

  18. R. Leberman, and U. Egner, Homologies in the primary structure of GTP-binding proteins: The nucleotide-binding site of EF-Tu and p21. The EMBO Journal 3:339 (1984).

    PubMed  CAS  Google Scholar 

  19. K. Halliday, Regional homology in GTP-binding proto-oncogene products and elongation factors, J. Cyclic Nucleotide Prot. Phosphoryl. Res. 9:435 (1984).

    CAS  Google Scholar 

  20. T. E. Dever, M. J. Glynias, and W. C. Merrick, GTP-binding domain: Three consensus sequence elements with distinct spacing, Proc. Natl. Acad. Sci. USA, 84:1814–1818 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. F. McCormick, B. F. C. Clark, T. F. M. la Cour, M. Kjeldgaard, L. Norskov-Lauritsen, and J. Nyborg, A model for the tertiary structure of p21, the product of the ras oncogene. Science 230:78–82 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. I. S. Sigal, G. M. Smith, F. Jurnak, J. D. Marsico-Ahern, J. S. D’allonzo, E. M. Scolnick, and J. B. Gibbs, Molecular approaches towards an anti-ras drug, Anti-Cancer Drug Design 2:107–115 (1987).

    PubMed  CAS  Google Scholar 

  23. A.M. de Vos, L. Tong, M. V. Milburn, P. M. Matias, J. Jancarik, S. Noguchi, S. Nishimura, K. Miura, E. Ohtsuka, and S-H. Kim, Three-dimensional structure of an oncogene protein: Catalytic domain of human C-H-ras p21, Science 239:888–893 (1988).

    Article  PubMed  Google Scholar 

  24. F. Jurnak, The three-dimensional structure of C-H-ras p21: Implications for oncogene and G protein studies, Trends in Biochem. Sci. 13:195–198 (1988).

    Article  CAS  Google Scholar 

  25. F. Jurnak and A. McPherson, eds., “Biological Macromolecules and Assemblies: Virus Structures,” Vol. 1, John Wiley &Sons, New York (1984).

    Google Scholar 

  26. A. Parmeggiani, G. W. M. Swart, K. K. Mortensen, M. Jensen, B. F. C. Clark, L. Dente, and R. Cortese, Properties of a genetically engineered G domain of elongation factor Tu, Proc. Natl. Acad. Sci. USA 84:3141–3145 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. K. H. Nierhau, and H. G. Wittman, Ribosomal function and its inhibition by antibiotics in procaryotes, Naturwissenschaften 67:234–250 (1980).

    Article  Google Scholar 

  28. G. Suarez and D. Nathans, Inhibition of aminoacyl-tRNA binding to ribosomes by tetracycline, Biochem. Biophys. Res. Commun. 18:743–750 (1965).

    Article  CAS  Google Scholar 

  29. T. Tritton, Ribosome-tetracycline interactions, Biochemistry 16:4133–4138 (1977)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jurnak, F., Nelson, M., Yoder, M., Heffron, S., Miu, S. (1989). Progress on the Three-Dimensional Structural Determination of Trypsin-Modified EF-TU-GDP. In: Bosch, L., Kraal, B., Parmeggiani, A. (eds) The Guanine — Nucleotide Binding Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2037-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2037-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2039-6

  • Online ISBN: 978-1-4757-2037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics