Analysis of the Biochemical and Biological Activities of Deletion Mutants of the H-Ras P21 Protein Suggest That Gap is an Essential Component of Its Effector Function

  • Armando Di Donato
  • Shiv K. Srivastava
  • Juan Carlos Lacal


The anti-ras p21 monoclonal antibody Y13–259 has been shown to efficiently neutralize DNA synthesis induced by serum in quiescent cells (1), and phenotypically reverts cells transformed by a variety of oncogenes (2). Due to the putative biological relevance of the epitope recognized by the monoclonal antibody Y13–259, we have generated deletion mutants of the H-ras p21 protein which lack residues 58 to 63 or 64 to 68, and contain either glycine or arginine at position 12. In addition, those mutants carrying a deletion at position 64 to 68 also carried an activating substitution of Thr at position 59. None of the deleted proteins were recognized by monoclonal antibody Y13–259, and those mutants carrying activating mutations showed at least a 100-fold reduction in their transforming activities compared to their non-deleted counterparts. The mutant proteins carrying a normal 12 position also showed a decreased transforming activity when compared to the normal protein. Alterations observed in the in vitro GTPase or GTP-interchange properties in our deletion mutants were not consistent with their decreased transforming activities. Moreover, all the generated mutants showed normal palmitylation and membrane localization, known to be essential for biological activity of ras proteins. Recently, a protein, designated as GAP, has been described which is able to specifically increase the GTPase activity of normal ras. p21 (3). We have found that GAP is unable to increase the GTPase activity of our deleted proteins. These observations strongly suggest that the recognition site for Y13–259 within the ras p21 molecule influences directly or indirectly the interaction of ras p21 with GAP, and suggest that this interaction is critical for the biological activity of ras. proteins.


Deletion Mutant GTPase Activity Transforming Activity Delete Protein Abelson Murine Leukemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mulcahy, I.S., Smith, M.R., and Stacey, D.W. Nature 313, 241–243 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    Smith, M.R., DeGudicibus, S.J., and Stacey, D.W. Nature 320, 540–543 (1984).CrossRefGoogle Scholar
  3. 3.
    Trahey, M., and McCormick, F. Science 238. 542–545 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    Gibbs, J.B., Sigal, I.S., and Scolnick, E.M. Trends Biochem. Sci. 10, 350–353 (1985)CrossRefGoogle Scholar
  5. 5..
    Lacal, J.C., and Tronick, S.E. The ras oncogene. In The Oncogene Handbook Reddy, P, Curran, T., and Skalka, A. edts. Elsvier, Holland (in press).Google Scholar
  6. 6.
    Tabin, C.J., Bradley, S.M., Bargmann, C.I., Weinberg, R.A., Papageorge, A.G, Scolnick, E.M., Dhar, R., Lowy, D.R., and Chang, E.H. Nature 300, 143–149 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    Reddy, E.P., Reynolds, R.K., Santos, E., and Barbacid, M. Nature 300, 149–152 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    Yuasa, Y., Srivastava, S.K., Dunn, C.Y., Rhim, J.S., Reddy, E.P., and Aaronson S.A. Nature 303, 775–779 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    Shimizu, K., Birnbaum, D., Ruley, M.A., Fasano, O., Suard, Y., Edlund, L, Taparowsky, E., Goldfarb, M., and Wigler, M. Nature 304. 497–500 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    Barbacid, M. Ann. Rev. Biochem. 56, 779–827 (1987)PubMedCrossRefGoogle Scholar
  11. 11.
    Sigal, I.S., Gibbs, J.B., Alonzo, J.S., and Scolnick, E.M. Proc. Natl. Acad. Sci. USA 83, 4725–4729 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    Lacal, J.C., and Aaronson, S.A. Mol. Cell. Biol. 6, 1002–1009 (1986).PubMedGoogle Scholar
  13. 13.
    Lacal, J.C., and Aaronson, S.A. Mol. Cell. Biol. 6, 4214–4220 (1986).PubMedGoogle Scholar
  14. 14.
    Hattori, S., Clanton, D.J., Satoh, T., Nakamura, S., Kaziro, Y., Kawakita, M. Shih, T.Y. Mol. Cell. Biol. 7, 1999–2002 (1987)PubMedGoogle Scholar
  15. 15.
    Willumsen, B.W., Papageorge, A.G., Kung, H., Bekesi, G., Robins, T., Johnsen, M. Vass, W.C., and Lowy, D.R. Mol. Cell. Biol. 6, 2646–2654 (1986).PubMedGoogle Scholar
  16. 16.
    Seeburg, P.H., Colby, W.W., Capon, D.J., Goeddel, D.V., and Levinson, A.D. Nature 312, 71–75 (1984)PubMedCrossRefGoogle Scholar
  17. 17.
    Lacal, J.C., Srivastava, S.K., Anderson, P.S., and Aaronson, S.A. Cell 44, 609–617 (1986)PubMedCrossRefGoogle Scholar
  18. 18.
    Fasano, O., Aldrich, T., Tamamoi, F., Taparowsky, E., Furth, M., and Wigler, M. Proc. Natl. Acad. Sci. USA 81, 4008–4012 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    Lacal, J.C., and Aaronson, S.A. EMBO J. 5, 679–687 (1986).PubMedGoogle Scholar
  20. 20.
    Lacal, J.C., Santos, E., Notario, V., Barbacid, M., Yamazaki, S., Kung, H., Seamans, C., McAndrew, S., and Crowl, R. Proc. Natl. Acad. Sci. USA 81, 5305–5309 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    Zoller, M.J., and Smith, M. Methods in Enzymol. 100, 468–500 (1983)CrossRefGoogle Scholar
  22. 22.
    Graham, F.L., and van der Eb, A.J. Virology 52, 456–467 (1973)PubMedCrossRefGoogle Scholar
  23. 23.
    Srivastava, S.K., Yuasa, Y., Reynolds, S.H., and Aaronson, S.A. Proc. Natl. Acad. Sci. USA 82, 38–42 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    Furth, M., Davis, L.J., Fleurdelys, B., and Scolnick, E.M. J. Virol. 43, 294–304 (1982)PubMedGoogle Scholar
  25. 25.
    Willumsen, B.M., Christensen, A., Hubbert, N.L., Papageorge, A.G., and Lowy D.R. Nature 310, 583–586 (1984)PubMedCrossRefGoogle Scholar
  26. 26.
    Willumsen, B.M., Norris, K., Papageorge, A.G., Hubbert, N.L., and Lowy, D.R. EMBO J. 3, 2581–2585 (1984).PubMedGoogle Scholar
  27. 27.
    De Vos, A.M., Tong, L., Milburn, M.V., Matias, P.M., Jancarik, J., Noguchi, s., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S. Science 239, 888–893 (1988)PubMedCrossRefGoogle Scholar
  28. 28.
    Gibbs, J.B., Sigal, I.S., Poe, M., and Scolnick, E.M. Proc. Natl. Acad. Sci. USA 81, 5704–5708 (1984)PubMedCrossRefGoogle Scholar
  29. 29.
    McGrath, J.P., Capon, D.J., Goeddel, D.V., and Levinson, A.D. Nature 310, 644–649 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    Sweet, R.W., Yokoyama, S., Kamata, T., Feramisco, J.R., Rosenberg, M., and Gross, M. Nature 311, 273–275 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    Manne, V., Bekesi, V., and Kung H Proc. Natl. Acad. Sci. USA 82, 376–380 (1984)CrossRefGoogle Scholar
  32. 32.
    Der, C.J., Finkel, T., and Cooper, G.M. Cell 44, 167–176 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    Colby, W.W., Hayflick, J.S., Clark, S.G., and Levinson, A.D. Mol. Cell. Bio1.6, 730–734 (1986).Google Scholar
  34. 34.
    Trahey, M., Milley, R.J., Cole, G.E., Innis, M., Paterson, H., Marshall, C.J. Hall, A., and McCormick, F. Mol. Cell. Biol. 7, 541–544 (1987).PubMedGoogle Scholar
  35. 35.
    Sigal, I.S., Gibbs, J.B., D’Alonzo, J.S., Temeles, G.T., Wolanski, B.S., Socher S.H., and Scolnick, E.M. Proc. Natl. Acad. Sci. USA 83, 952–956 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    Cales, C., Hancock, J., Marshall, C.J., and Hall, A. Nature 332, 548–551 (1988)PubMedCrossRefGoogle Scholar
  37. 37.
    Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J., and McCormick, F. Science 240, 518–521 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Armando Di Donato
    • 1
  • Shiv K. Srivastava
    • 2
  • Juan Carlos Lacal
    • 3
  1. 1.Laboratory of Cellular and Molecular BiologyNational Cancer InstituteBethesdaUSA
  2. 2.Georgetown University Medical SchoolUSA
  3. 3.Instituto de Investigaciones Biomedicas, Facultad de MedicinaUniversidad AutonomaMadridSpain

Personalised recommendations