Skip to main content

Abstract

We have used linker insertion-deletion mutagenesis to study the Harvey murine sarcoma virus v-ras H transforming protein. The mutants were characterized with respect to their ability to induce morphological transformation of NIH 3T3 cells and the capacity of their proteins to bind guanosine nucleotides, undergo post-translational processing, and localize to the plasma membrane. We have identified four non-overlapping segments that are dispensable for morphological transformation of NIH 3T3 cells, as well as several segments that are required for transformation and stability in mammalian cells and guanosine nucleotide binding. One essential segment that does not affect guanine nucleotide binding or stability, which appears to lie on the exterior of the protein and therefore may interact with the putative ras protein target, has been identified (the effector domain, Willumsen et al., 1986, Sigal et al., 1986). A selected group of these mutations, which leave the v-ras H protein stable, processed and correctly localized, have been transferred to the c-ras H allele; the proteins were expressed in E. coli and assayed for the susceptibility to acceleration of their intrinsic GTPase activities by the protein GAP (GTPase Activating Protein, Trahey and McCormick, 1987). The results show that only mutations in the effector domain destroy GAP susceptibility (Adari et al., 1988); however, not all mutations affect both activities coordinately. These results suggest that GAP as well as the effector mediating p21 transformation interact through the same region on p21. The identification of mutations that destroy transformation when present in the v-ras H allele which do not destroy the GAP susceptibility of p21 protein from the c-ras H allele raises the possibility that the two factors may not be the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J., McCormick, F., 1988, Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain., Science, 240, 518–521.

    Article  PubMed  CAS  Google Scholar 

  • Barbacid, M., 1987, ras genes, in Ann. Rev. Biochem., 56, 779–827.

    Article  PubMed  CAS  Google Scholar 

  • Beckner, S. K., Hattori, S., Shih, T. Y., 1985., The ras oncogene product p21 is not a regulatory component of adenylate cyclase., Nature, 317, 71–73.

    Google Scholar 

  • Broek, D., Samily, N., Fasano, O., Fujiyama, A., Tamanoi, F., Northup, J., Wigler, M., 1985, Differential activation of yeast adenylate cyclase by wild type and mutant RAS proteins., Cell, 41, 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Broek, D., Toda, T., Michaiel, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., Wigler, M., 1987, The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway, Cell, 48, 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Buss, J. E., Sefton, B. M., 1986, Direct identification of palmitic acid as the lipid attached to p21-ras., Mol. Cell. Biol., 6, 116–122.

    PubMed  CAS  Google Scholar 

  • Calès, C., Hancock, J. F., Marshall, C., Hall, A., 1988, The cytoplasmic protein GAP is implicated as the target for regulation for the ras gene product, Nature, 332, 548–551.

    Article  PubMed  Google Scholar 

  • Chen, Z-Q., Ulsh, I.S., DuBois, G., Shih, T. Y., 1985, Posttranslational processing of p21 ras proteins involves palmitylation of the C-termi-nal tetrapeptide containing cysteine-186., J. Virol., 56, 607–612

    PubMed  CAS  Google Scholar 

  • Clanton, D. J., Lu, Y., Blair, D. G., Shih, T. Y., 1987, Structural significance of the GTP-binding domain of ras p21 studied by site-directed mutagenesis., Mol. Cell. Biol., 7, 3092–3097.

    PubMed  CAS  Google Scholar 

  • de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., Kim, S-H., 1988, Three-dimentional structure of an oncogene protein: Catalytic domain of human c-Ha-ras p21, Science, 239, 888–893.

    Article  PubMed  Google Scholar 

  • DeFeo-Jones, D., Tatchell, K., Robinson, L. C., Sigal, I. S., Vass, W. C., Lowy, D. R., Scolnick, E. M., 1985., Mammalian and yeast ras gene products: Biological function in their heterologous systems, Science, 228, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Field, J., Broek, D., Kataoka, T., Wigler, M., 1987, Guanine nucleotide activation of, and competition between, RAS proteins from Saccharomyces cerevisiae., Mol. Cell. Biol., 7, 2128–2133.

    PubMed  CAS  Google Scholar 

  • Fujiyama, A., Tamanoi, F., 1986., Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae., Proc. Natl. Acad. Sci., 83, 1266–1270.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, Y., Kozasa, Kaziro, Y., Takeda, T., Yamamoto, M., 1986, Role of a ras homolog in the life cycle of Schizosaccharomyces pompe., Cell, 44, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Jhappan, C., Vande Woude, G. P., Robins, T. S., 1986, Transduction of host cellular sequences by a retroviral shuttle vector., J. Virol., 60, 750–753.

    PubMed  CAS  Google Scholar 

  • Jurnack, F., 1985., Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins., Science, 230, 32–36.

    Article  Google Scholar 

  • Kataoka, T., Powers, S., Camaron, S., Fasano, O., Goldfarb, M., Broach, J., Wigler, M., 1985., Functional homology of mammalian and yeast RAS genes., Cell, 40, 19–26.

    CAS  Google Scholar 

  • Kyte J., Doolittle R. F., 1982, A simple method for displaying the hydropathic characted of a protein, J. Mol. Biol., 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lacal, J. C., Santos, E., Notario, V., Barbacid, M., Yamazaki, S., Kung, H-F., Seamans, C., McAndrew, S., Crowl, R., 1984, Expression of normal and transforming H-ras genes in Escherichia coli and purification of their encoded p21 proteins., Proc. Natl. Acad. Sci. USA. 81, 5305–5309.

    Article  PubMed  CAS  Google Scholar 

  • Levitzki, A., Rudick, J., Pastan, I., Vass, W.C., Lowy, D.R., 1986, Adenylate cyclase activity of NIH 3T3 cell morphologically transformed by ras genes, FEBS Letters, 197, 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Lowy, D. R., Rands, E., Scolnick, E. M., 1978, Helper independent transformation by unintegrated Harvey Sarcoma virus DNA, J. Virol., 26, 291–298.

    PubMed  CAS  Google Scholar 

  • Lowy, D. R., Papageorge, A. G., Vass, W. C., Willumsen, B. M. (1988). Mutational analysis of ras processing and function. In: Cellular and Molecular Biology of Tumors and Potential Clinical Applications. Minna, J. D., Kuehl, M., eds., Alan R. Liss, Inc., New York, pp 203–212.

    Google Scholar 

  • Marshall C: In Weiss P., et al (eds): “RNA Tumor Viruses. Molecular Biology of Tumor Viruses.” New York: Supplement to 2nd edition, Cold Spring Harbor Laboratory, 1985, pp 487–558.

    Google Scholar 

  • Marshall, M. S., Gibbs, J. B., Scolnick, E. M., Sigal, I. S., 1988, An adenylate cyclase from Sachharomyces cerevisiae that is stimulated by RAS proteins with effector mutations, Mol. Cell. Biol., 8, 52–61.

    PubMed  CAS  Google Scholar 

  • McCormick, F., Clark, B. F. C., La Cour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., Nyborg, J., 1985., A model for the tertiary structure of p21, the product of the ras oncogene., Science, 230, 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Mulcahy, L. S., Smith, M. R., Stacey, D. W., 1985., Requirements for ras proto-oncogene function during serum stimulated growth of NIH 3T3 cells., Nature, 313, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Robinsion, L. C., Gibbs, J. B., Marshall, M. S., Sigal, I. S., Tatchell, K., 1987, CDC25: A component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae., Science, 235, 1218–1221.

    Article  Google Scholar 

  • Sigal, I. S., Gibbs, J. B., D’Alonzo, J. S., Scolnick, E. M., 1986, Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21., Proc. Natl. Acad. Sci., 83, 4725–4729.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J. C., Vass, W. C., Willumsen, B. M., Lowy, D. L., 1988, p21-ras effector domain mutants constructed by “cassette” mutagenesis., Mol. Cell. Biol., 8, 3565–3569.

    PubMed  CAS  Google Scholar 

  • Stryer, L., Bourne, H., 1986, G proteins: A family of signal transducers, Ann. Rev. Cell Biol., 2, 389–417.

    Article  Google Scholar 

  • Trahey, M., McCormick, F., 1987, A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants., Science, 238, 542–545.

    Article  PubMed  CAS  Google Scholar 

  • Willumsen, B.M., Papageorge, A.G., Kung, H.-F., Bekesi, E., Robins, T., Johnsen, M., Vass, W.C., Lowy, D.R., 1986, Mutational analysis of a ras catalytic domain, Mol. Cell. Biol., 6, 2646–2654.

    PubMed  CAS  Google Scholar 

  • Willumsen, B M., Christensen, A., Hubbert, N. L., Papageorge, A. G., Lowy, D. R., 1984a., The p21 ras terminus is required for transformation and membrane association., Nature, 310, 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., Lowy, D. R., 1984b., Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus., EMBO J. 3, 2581–2585.

    PubMed  CAS  Google Scholar 

  • Willumsen, B. M., Papageorge, A. G., Hubbert, N., Bekesi, E., Kung, H-F, Lowy, D. R., 1985., Transforming p21 ras protein: flexibility in the major variable region linking the catalytic and membrane-anchoring domain., EMBO J., 4, 2893–2896.

    PubMed  CAS  Google Scholar 

  • Willumsen, B. M., Papageorge, A. G., Kung, H-F., Bekesi, E., Robins, T. S., Johnsen, M., Vass, W. C., Lowy, D. R., 1986, Mutational analysis of a ras catalytic domain, Mol. Cell. Biol., 6, 2646–2654.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willumsen, B.M. et al. (1989). A Mutational Analysis of ras Function. In: Bosch, L., Kraal, B., Parmeggiani, A. (eds) The Guanine — Nucleotide Binding Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2037-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2037-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2039-6

  • Online ISBN: 978-1-4757-2037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics