A Mutational Analysis of ras Function

  • Berthe M. Willumsen
  • Hedy Adari
  • Ke Zhang
  • Alex G. Papageorge
  • James C. Stone
  • Frank McCormick
  • Douglas R. Lowy


We have used linker insertion-deletion mutagenesis to study the Harvey murine sarcoma virus v-ras H transforming protein. The mutants were characterized with respect to their ability to induce morphological transformation of NIH 3T3 cells and the capacity of their proteins to bind guanosine nucleotides, undergo post-translational processing, and localize to the plasma membrane. We have identified four non-overlapping segments that are dispensable for morphological transformation of NIH 3T3 cells, as well as several segments that are required for transformation and stability in mammalian cells and guanosine nucleotide binding. One essential segment that does not affect guanine nucleotide binding or stability, which appears to lie on the exterior of the protein and therefore may interact with the putative ras protein target, has been identified (the effector domain, Willumsen et al., 1986, Sigal et al., 1986). A selected group of these mutations, which leave the v-ras H protein stable, processed and correctly localized, have been transferred to the c-ras H allele; the proteins were expressed in E. coli and assayed for the susceptibility to acceleration of their intrinsic GTPase activities by the protein GAP (GTPase Activating Protein, Trahey and McCormick, 1987). The results show that only mutations in the effector domain destroy GAP susceptibility (Adari et al., 1988); however, not all mutations affect both activities coordinately. These results suggest that GAP as well as the effector mediating p21 transformation interact through the same region on p21. The identification of mutations that destroy transformation when present in the v-ras H allele which do not destroy the GAP susceptibility of p21 protein from the c-ras H allele raises the possibility that the two factors may not be the same.


Long Terminal Repeat Effector Domain Essential Region Intrinsic GTPase Activity Gamma Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J., McCormick, F., 1988, Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain., Science, 240, 518–521.PubMedCrossRefGoogle Scholar
  2. Barbacid, M., 1987, ras genes, in Ann. Rev. Biochem., 56, 779–827.PubMedCrossRefGoogle Scholar
  3. Beckner, S. K., Hattori, S., Shih, T. Y., 1985., The ras oncogene product p21 is not a regulatory component of adenylate cyclase., Nature, 317, 71–73.Google Scholar
  4. Broek, D., Samily, N., Fasano, O., Fujiyama, A., Tamanoi, F., Northup, J., Wigler, M., 1985, Differential activation of yeast adenylate cyclase by wild type and mutant RAS proteins., Cell, 41, 763–769.PubMedCrossRefGoogle Scholar
  5. Broek, D., Toda, T., Michaiel, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., Wigler, M., 1987, The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway, Cell, 48, 789–799.PubMedCrossRefGoogle Scholar
  6. Buss, J. E., Sefton, B. M., 1986, Direct identification of palmitic acid as the lipid attached to p21-ras., Mol. Cell. Biol., 6, 116–122.PubMedGoogle Scholar
  7. Calès, C., Hancock, J. F., Marshall, C., Hall, A., 1988, The cytoplasmic protein GAP is implicated as the target for regulation for the ras gene product, Nature, 332, 548–551.PubMedCrossRefGoogle Scholar
  8. Chen, Z-Q., Ulsh, I.S., DuBois, G., Shih, T. Y., 1985, Posttranslational processing of p21 ras proteins involves palmitylation of the C-termi-nal tetrapeptide containing cysteine-186., J. Virol., 56, 607–612PubMedGoogle Scholar
  9. Clanton, D. J., Lu, Y., Blair, D. G., Shih, T. Y., 1987, Structural significance of the GTP-binding domain of ras p21 studied by site-directed mutagenesis., Mol. Cell. Biol., 7, 3092–3097.PubMedGoogle Scholar
  10. de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., Kim, S-H., 1988, Three-dimentional structure of an oncogene protein: Catalytic domain of human c-Ha-ras p21, Science, 239, 888–893.PubMedCrossRefGoogle Scholar
  11. DeFeo-Jones, D., Tatchell, K., Robinson, L. C., Sigal, I. S., Vass, W. C., Lowy, D. R., Scolnick, E. M., 1985., Mammalian and yeast ras gene products: Biological function in their heterologous systems, Science, 228, 179–184.PubMedCrossRefGoogle Scholar
  12. Field, J., Broek, D., Kataoka, T., Wigler, M., 1987, Guanine nucleotide activation of, and competition between, RAS proteins from Saccharomyces cerevisiae., Mol. Cell. Biol., 7, 2128–2133.PubMedGoogle Scholar
  13. Fujiyama, A., Tamanoi, F., 1986., Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae., Proc. Natl. Acad. Sci., 83, 1266–1270.PubMedCrossRefGoogle Scholar
  14. Fukui, Y., Kozasa, Kaziro, Y., Takeda, T., Yamamoto, M., 1986, Role of a ras homolog in the life cycle of Schizosaccharomyces pompe., Cell, 44, 329–336.PubMedCrossRefGoogle Scholar
  15. Jhappan, C., Vande Woude, G. P., Robins, T. S., 1986, Transduction of host cellular sequences by a retroviral shuttle vector., J. Virol., 60, 750–753.PubMedGoogle Scholar
  16. Jurnack, F., 1985., Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins., Science, 230, 32–36.CrossRefGoogle Scholar
  17. Kataoka, T., Powers, S., Camaron, S., Fasano, O., Goldfarb, M., Broach, J., Wigler, M., 1985., Functional homology of mammalian and yeast RAS genes., Cell, 40, 19–26.Google Scholar
  18. Kyte J., Doolittle R. F., 1982, A simple method for displaying the hydropathic characted of a protein, J. Mol. Biol., 157, 105–132.PubMedCrossRefGoogle Scholar
  19. Lacal, J. C., Santos, E., Notario, V., Barbacid, M., Yamazaki, S., Kung, H-F., Seamans, C., McAndrew, S., Crowl, R., 1984, Expression of normal and transforming H-ras genes in Escherichia coli and purification of their encoded p21 proteins., Proc. Natl. Acad. Sci. USA. 81, 5305–5309.PubMedCrossRefGoogle Scholar
  20. Levitzki, A., Rudick, J., Pastan, I., Vass, W.C., Lowy, D.R., 1986, Adenylate cyclase activity of NIH 3T3 cell morphologically transformed by ras genes, FEBS Letters, 197, 134–138.PubMedCrossRefGoogle Scholar
  21. Lowy, D. R., Rands, E., Scolnick, E. M., 1978, Helper independent transformation by unintegrated Harvey Sarcoma virus DNA, J. Virol., 26, 291–298.PubMedGoogle Scholar
  22. Lowy, D. R., Papageorge, A. G., Vass, W. C., Willumsen, B. M. (1988). Mutational analysis of ras processing and function. In: Cellular and Molecular Biology of Tumors and Potential Clinical Applications. Minna, J. D., Kuehl, M., eds., Alan R. Liss, Inc., New York, pp 203–212.Google Scholar
  23. Marshall C: In Weiss P., et al (eds): “RNA Tumor Viruses. Molecular Biology of Tumor Viruses.” New York: Supplement to 2nd edition, Cold Spring Harbor Laboratory, 1985, pp 487–558.Google Scholar
  24. Marshall, M. S., Gibbs, J. B., Scolnick, E. M., Sigal, I. S., 1988, An adenylate cyclase from Sachharomyces cerevisiae that is stimulated by RAS proteins with effector mutations, Mol. Cell. Biol., 8, 52–61.PubMedGoogle Scholar
  25. McCormick, F., Clark, B. F. C., La Cour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., Nyborg, J., 1985., A model for the tertiary structure of p21, the product of the ras oncogene., Science, 230, 78–82.PubMedCrossRefGoogle Scholar
  26. Mulcahy, L. S., Smith, M. R., Stacey, D. W., 1985., Requirements for ras proto-oncogene function during serum stimulated growth of NIH 3T3 cells., Nature, 313, 241–243.PubMedCrossRefGoogle Scholar
  27. Robinsion, L. C., Gibbs, J. B., Marshall, M. S., Sigal, I. S., Tatchell, K., 1987, CDC25: A component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae., Science, 235, 1218–1221.CrossRefGoogle Scholar
  28. Sigal, I. S., Gibbs, J. B., D’Alonzo, J. S., Scolnick, E. M., 1986, Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21., Proc. Natl. Acad. Sci., 83, 4725–4729.PubMedCrossRefGoogle Scholar
  29. Stone, J. C., Vass, W. C., Willumsen, B. M., Lowy, D. L., 1988, p21-ras effector domain mutants constructed by “cassette” mutagenesis., Mol. Cell. Biol., 8, 3565–3569.PubMedGoogle Scholar
  30. Stryer, L., Bourne, H., 1986, G proteins: A family of signal transducers, Ann. Rev. Cell Biol., 2, 389–417.CrossRefGoogle Scholar
  31. Trahey, M., McCormick, F., 1987, A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants., Science, 238, 542–545.PubMedCrossRefGoogle Scholar
  32. Willumsen, B.M., Papageorge, A.G., Kung, H.-F., Bekesi, E., Robins, T., Johnsen, M., Vass, W.C., Lowy, D.R., 1986, Mutational analysis of a ras catalytic domain, Mol. Cell. Biol., 6, 2646–2654.PubMedGoogle Scholar
  33. Willumsen, B M., Christensen, A., Hubbert, N. L., Papageorge, A. G., Lowy, D. R., 1984a., The p21 ras terminus is required for transformation and membrane association., Nature, 310, 583–586.PubMedCrossRefGoogle Scholar
  34. Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., Lowy, D. R., 1984b., Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus., EMBO J. 3, 2581–2585.PubMedGoogle Scholar
  35. Willumsen, B. M., Papageorge, A. G., Hubbert, N., Bekesi, E., Kung, H-F, Lowy, D. R., 1985., Transforming p21 ras protein: flexibility in the major variable region linking the catalytic and membrane-anchoring domain., EMBO J., 4, 2893–2896.PubMedGoogle Scholar
  36. Willumsen, B. M., Papageorge, A. G., Kung, H-F., Bekesi, E., Robins, T. S., Johnsen, M., Vass, W. C., Lowy, D. R., 1986, Mutational analysis of a ras catalytic domain, Mol. Cell. Biol., 6, 2646–2654.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Berthe M. Willumsen
    • 1
  • Hedy Adari
    • 2
  • Ke Zhang
    • 4
  • Alex G. Papageorge
    • 4
  • James C. Stone
    • 3
  • Frank McCormick
    • 2
  • Douglas R. Lowy
    • 4
  1. 1.University Institute of MicrobiologyCopenhagenDenmark
  2. 2.Departmemt of Molecular BiologyCetus CorporationEmeryvilleUSA
  3. 3.Jackson LaboratoriesBar HarborUSA
  4. 4.Laboratory of Cellular OncologyNational Cancer InstituteBethesdaUSA

Personalised recommendations