Effects of Kirromycin on the Elongation Factor EF-Tu and its Interactions with GDP or GTP and tRNA. The Application of zone-Interference Gel Electrophoresis, a New Method for the Analysis of Weak Complexes

  • Barend Kraal
  • Jan Pieter Abrahams
  • Leendert Bosch


All the members of the GTP-binding protein family behave like molecular switches. They can have two conformations: in the presence of bound GTP the complex is in the “on” conformation and, after GTP hydrolysis, the GDP containing complex is in the “off” position. The switching process can become blocked by natural ways, such as phosphorylation or ADP-ribosylation, as well as by artificial tricks, such as mutagenesis at strategic positions of the protein chain or by the use of non-hydrolyzable GTP-analogues.


Weak Complex High Negative Charge tRNA Molecule Ribosomal Complex Intrinsic GTPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, J. P., Kraal, B., and Bosch, L. 1988, Zone-interference gel electrophoresis: a new method for studying weak protein-nucleic acid complexes under native equilibrium conditions, Nucl. Ac. Res., in press.Google Scholar
  2. Abrahamson, J. K., Laue, Th. M., Miller, D. L., and Johnson, A. E., 1985, Direct determination of the association constant between EF-Tu.GTP and aminoacyl-tRNA using fluorescence, Biochemistry, 24:692.PubMedCrossRefGoogle Scholar
  3. Eccleston, J. F., Spectrophotometric and kinetic studies on the interaction of aurodox with EF-Tu from E. coli, J. Biol. Chem., 256:3175.Google Scholar
  4. Garner, M. M., and Revzin, A., 1981, A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions, Nucl. Ac. Res., 9:3047.CrossRefGoogle Scholar
  5. Hummel, J. P., and Dreyer, W. J., 1962, Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta, 63:530.PubMedCrossRefGoogle Scholar
  6. Johnson, A. E., Janiak, F., Dell, V. A., and Abrahamson, J. K., 1986, The aminoacyl-tRNA.EF-Tu.GTP ternary complex and its role in aminoacyl-tRNA selection at the ribosome, in: “Structure, function and genetics of ribosomes”, B. Hardesty and G. Kramer, eds., Springer-Verlag, New York.Google Scholar
  7. Louie, A., and Jurnak, F., 1985, Kinetic studies of E. coli EF-Tu.GTP. aminoacyl-tRNA complexes, Biochemistry, 24:6433.PubMedCrossRefGoogle Scholar
  8. Parlato, G., Guesnet, J., Crechet, J.-B., and Parmeggiani, A., 1981, The GTPase activity of EF-Tu and the 3’ terminal end of aminoacyl-tRNA, FEBS Lett., 125:257.PubMedCrossRefGoogle Scholar
  9. Parmeggiani, A., and Swart, G. W. M., 1985, Mechanism of action of kirromycin-like antibiotics, Ann. Rev. Microbiol., 39:557.CrossRefGoogle Scholar
  10. Pingoud, A., Block, W., Wittinghofer, A., Wolf, H., and Fischer, E., 1982, The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP, J. Biol. Chem., 257:11261.PubMedGoogle Scholar
  11. Van Noort, J. M., Kraal, B., Bosch, L., La Cour, T. F. M., Nyborg, J. and Clark, B. F. C., 1984, Cross-linking of tRNA at two different sites of the elongation factor EF-Tu, Proc. Natl. Acad. Sci. USA, 81:3969.PubMedCrossRefGoogle Scholar
  12. Van Noort, J. M., Kraal, B., and Bosch, L., 1985, A second tRNA binding site on EF-Tu is induced while the factor is bound to the ribosome, Proc. Natl. Acad. Sci. USA, 82:3212.PubMedCrossRefGoogle Scholar
  13. Van Noort, J. M., Kraal, B., and Bosch, L., 1986, The GTPase center of elongation factor Tu is activated by occupation of the second tRNA binding site, Proc. Natl. Acad. Sci. USA, 83:4617.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Barend Kraal
    • 1
  • Jan Pieter Abrahams
    • 1
  • Leendert Bosch
    • 1
  1. 1.Department of BiochemistryLeiden UniversityLeidenThe Netherlands

Personalised recommendations